中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 137-148 DOI: 10.7536/PC161001 Previous Articles   Next Articles

• Review •

Synthesis of Lithium Iron Phosphate Cathode Material by Liquid State Method

Yuanchao Du, Zheng Hua, Feng Liang, Yongmei Li, Yongnian Dai, Yaochun Yao*   

  1. National Engineering Laboratory for Vacuum Metallurgy, Engineering Laboratory for Advanced Batteries and Materials of Yunnan Province, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51364021), the Natural Science Foundation of Yunnan Province (No. 2014FA025), and the Academician's Discovering Found from Yunnan Provincial Science and Technology (No. 2015HA016,2016HA011).
PDF ( 3011 ) Cited
Export

EndNote

Ris

BibTeX

The liquid state method has the advantages of fast heat and mass transfer, controlled particle size and shape of materials, so it is widely used in the preparation of various types of materials. In this paper, the process, principle and research progress of co-precipitation method, solvothermal method and sol-gel method for the synthesis of lithium iron phosphate are compared and summarized:the basic requirement of liquid phase synthesis is nano particle size, high specific surface area and carbon coating,which can solve the problem of low electron conductivity and slow lithium ion diffusion rate, accordingly improve the rate performance of materials. The co-precipitation method has advantage in synthesizing the densely packed spherical morphology materials to obtain high tap density and improve the energy density of materials. Solvothermal method is beneficial to synthesize large (010) surface materials, shorten the distance of lithium ion diffusion, and improve the rate performance of the material. Sol-gel can achieve molecular level mixing, which is favorable for the preparation of homogeneous and in situ carbon coated materials. Scientists introduce materials of high electronic conductivity and ionic conductivity to improve conductivity of LiFePO4. Compared with the solid phase method, to investigate a fast, facile process, low cost and easily-industrialized method, and to promote the development and progress of liquid state method in principle and technology is the research direction.

Contents
1 Introduction
2 Synthesis of lithium iron phosphate by co-precipitation method
2.1 Syntheses of nano material
2.2 The reaction mechanism
2.3 Improving tap density of the material
2.4 Introduce high conductivity materials
3 Synthesis of lithium iron phosphate by solvothermal method
3.1 Syntheses of the material of large (010) surface
3.2 Syntheses of the material with nano particle size and high specific surface area
3.3 Introduce high conductivity materials
3.4 The reaction mechanism
4 Synthesis of lithium iron phosphate by sol-gel method
4.1 The chelant
4.2 Introduce high conductivity materials
4.3 Amphiphilic surfactant
5 Conclusion

CLC Number: 

[1] 姚耀春(Yao Y C). 昆明理工大学博士学位论文(Doctoral Dissertation of Kunming University of Science and Technology), 2005:4.
[2] 潘芳芳(Pan F F). 中国科技大学博士学位论文(Doctoral Dissertation of University of Science and Technology of China), 2011:12.
[3] 梁风(Liang F). 昆明理工大学硕士学位论文(Master Dissertation of Kunming University of Science and Technology), 2009:7.
[4] Prosini P P, Carewska M, Scaccia S, Wisniewski P, Pasquali M. Electrochimica Acta, 2003, 48:4205.
[5] Wang Y G, Wang Y R, Hosono E J, Wang K X, Zhou H S. Angewandte Chemie, 2008, 120:7571.
[6] Wang X D, Cheng K, Zhang J W, Yu L G, Yang J J. Advanced Powder Technology, 2013, 24:593.
[7] Zhang Q G, Peng T Y, Zhan D, Hu X H, Zhu G Z. Materials Chemistry and Physics, 2013, 138:146.
[8] Chen C, Liu G B, Wang Y, Li J L, Liu H. Electrochimica Acta, 2013, 113:464.
[9] Islam M, Ur S C, Yoon M S. Current Applied Physics, 2015, 15:541.
[10] Zhang J, Lu J B, Bian D C, Yang Z H, Wu Q, Zhang W X. Industrial & Engineering Chemistry Research, 2014, 53:12209.
[11] 倪江锋(Ni J F), 周恒辉(Zhou H H), 陈继涛(Chen J T), 苏光耀(Su G Y). 物理化学学报(Acta Phys-Chim.Simca), 2004, 20(6):582.
[12] 郑国瑞(Zheng G R), 甘礼安(Gan L A), 陈春枝(Chen C Z), 赵瑞瑞(Zhao R R), 陈红雨(Chen H Y). 电源技术(Chin.J.Power Sounes), 2014, 38(2):221.
[13] Yoon M S, Islam M, Park Y M, Ur S C. Electronic Materials Letters, 2013, 9(2):187.
[14] Bi J Y, Zhang T B, Wang K, Zhong B H, Luo G S. Particuology, 2016, 24:142.
[15] Oh S W, Bang H J, Myung S T, Bae Y C, Lee S M, Sun Y K. Journal of the Electrochemical Society, 2008, 155(6):A414.
[16] Oh S W, Myung S T, Bang H J, Yoon C S, Amine K, Suna Y K. Electrochemical and Solid-State Letters, 2009, 12(9):A181.
[17] Oh S W, Myung S T, Oh S M, Yoon C S, Amine K, Sun Y K. Electrochimica Acta, 2010, 55:1193.
[18] Bai N B, Chen H, Zhou W, Xiang K X, Zhang Y L, Li C L, Lu H Y. Electrochimica Acta, 2015, 167:172.
[19] Jegal J P, Kim K B. Journal of Power Sources, 2013, 243:859.
[20] Wu K P, Hu G R, Du K, Peng Z D, Cao Y B. Ceramics International, 2015, 41:13867.
[21] Xie H M, Wang R S, Ying J R, Zhang L Y, Jalbout A F, Yu H Y, Yang G L, Pan X M, Su Z M. Advanced Materials, 2006, 18:2609.
[22] Ma Z P, Shao G J, Qin X J, Fan Y Q, Wang G L, Song J J, Liu T T. Journal of Power Sources, 2014, 269:194.
[23] Yang S F, Zavalij P Y, Whittingham M S. Electrochemistry Communications, 2001, 3:505.
[24] Chen J J, Whittingham M S. Electrochemistry Communications, 2006, 8:855.
[25] 庄大高(Zhuang D G), 赵新兵(Zhao X B), 曹高劭(Cao G S), 米常焕(Mi C H), 涂健(Tu J), 涂江平(Tu J P). 中国有色金属学报(Chin.J.Nonferrous), 2005, 15(12):2034.
[26] 文倩倩(Wen Q Q), 贾梦秋(Jia M Q). 电池(Battery), 2013, 43(1):18.
[27] Nan C Y, Lu J, Chen C, Peng Q, Li Y D. Journal of Materials Chemistry, 2011, 21:9994.
[28] Nan C Y, Lu J, Li L H, Li L L, Peng Q, Li Y D. Nano Research, 2013, 6(7):469.
[29] Pei B, Yao H X, Zhang W X, Yang Z H. Journal of Power Sources, 2012, 220:317.
[30] Wang L, He X M, Sun W T, Wang J L, Li Y D, Fan S S. Nano Letters, 2012, 12:5632.
[31] Chen M M, Ma Q Q, Wang C Y, Sun X, Wang L Q, Zhang C. Journal of Power Sources, 2014, 263:268.
[32] Wang B, Wang S, Liu P, Deng J, Xu B H, Liu T F, Wang D L, Zhao X S. Materials Letters, 2014, 118:137.
[33] Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N. Journal of Power Sources, 2006, 160:516.
[34] Wang Q, Zhang W X, Yang Z H, Weng S Y, Jin Z J. Journal of Power Sources, 2011, 196:10176.
[35] Li J, Qu Q T, Zhang L F, Zhang L, Zheng H H. Journal of Alloys and Compounds, 2013, 579:377.
[36] Chen J, Zou Y C, Zhang F, Zhang Y C, Guo F F, Li G D. Journal of Alloys and Compounds, 2013, 563:264.
[37] Xu G, Li F, Tao Z H, Wei X, Liu Y, Li X, Ren Z H, Shen G, Han G R. Journal of Power Sources, 2014, 246:696.
[38] Wang J, Zheng S Q, Yan H, Zhang H P, Hojamberdiev M, Ren B, Xu Y H. Materials Chemistry and Physics, 2015, 160:398.
[39] Lupo F D, Meligrana G, Gerbaldi C, Bodoardo S, Penazzi N. Electrochimica Acta, 2015, 156:188.
[40] Tan Q Q, Lv C, Xu Y X, Yang J. Particuology, 2014, 17:106.
[41] Deng H G, Jin S L, Zhan L, Wang Y L, Qiao W M, Ling L C. Journal of Power Sources, 2012, 220:342.
[42] Zheng Z M, Pang W K, Tang X C, Jia D Z, Huang Y D, Guo Z P. Journal of Alloys and Compounds, 2015, 640:95.
[43] Wang R H, Xu C H, Sun J, Gao L, Jin J, Lin C C. Materials Letters, 2013, 112:207.
[44] Chen M, Du C Y, Song B, Xiong K, Yin G P, Zuo P J, Cheng X Q. Journal of Power Sources, 2013, 223:100.
[45] Shu H B, Chen M F, Wen F, Fu Y Q, Liang Q Q, Yang X K, Shen Y Q, Liu L, Wang X Y. Electrochimica Acta, 2015, 152:368.
[46] Zhang L Y, Tang Y F, Liu Z Q, Huang H N, Fang Y Z, Huang F Q. Journal of Alloys and Compounds, 2015, 627:132.
[47] Liu Y Y, Gu J J, Zhang J L, Yu F, Dong L T, Nie N, Li W. Journal of Power Sources, 2016, 304:42.
[48] Ellis B, Kan W H, Makahnouk W R M, Nazar L F. Journal of Materials Chemistry, 2007, 17:3248.
[49] Qin X, Wang X H, Xiang H M, Xie J, Li J J, Zhou Y C. The Journal of Physical Chemistry C, 2010, 114:16806.
[50] Lee M H, Kim J Y, Song H K. Chemical Communications, 2010, 46:6795.
[51] Liu Y Y, Gu J J, Zhang J L, Wang J, Nie N, Fu Y, Li W, Yu F. Electrochimica Acta, 2015, 173:448.
[52] Johnson I D, Lübke M, Wu O Y, Makwana N M, Smales G J, Islam H U, Dedigama R Y, Gruar R I, Tighe C J, Scanlon D O, Cor F, Brett D J L, Shearing P R, Darr J A. Journal of Power Sources, 2016, 302:410.
[53] Hsu K F, Tsay S Y, Hwang B J. Journal of Materials Chemistry, 2004, 14:2690.
[54] Wang G X, Bewlay S, Yao J, Ahn J H, Dou S X, Liu H K. Electrochemical and Solid-State Letters, 2004, 7(12):A503.
[55] Dominko R, Goupil J M, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J. Journal of the Electrochemical Society, 2005, 152(5):A858.
[56] Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J. Solid State Ionics, 2005, 176:1801.
[57] Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Journal of The Electrochemical Society, 2005, 152(3):A607.
[58] Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil J M, Pejovnik S, Jamnik J. Journal of Power Sources, 2006, 153:274.
[59] Dominko R, Bele M, Goupil J M, Gaberscek M, Hanzel D, Arcon I, Jamnik J. Chemistry of Materials, 2007, 19:2960.
[60] Peng W X, Jiao L F, Gao H Y, Qi Z, Wang Q H, Du H M, Si Y C, Wang Y J, Yuan H T. Journal of Power Sources, 2011, 196:2841.
[61] Liu N Q, Gao M Y, Li Z B, Li C M, Wang W K, Zhang H, Yu Z B, Huang Y Q. Journal of Alloys and Compounds, 2014, 599:127.
[62] Chen M, Shao L L, Yang H B, Zhao Q Y, Yuan Z Y. Electrochimica Acta, 2015, 168:59.
[63] Chen M, Shao L L, Yang H B, Ren T Z, Du G H, Yuan Z Y. Electrochimica Acta, 2015, 167:278.
[64] 任兆刚(Ren Z G), 瞿美臻(Qu M Z), 于作龙(Yu Z L). 无机材料学报(J. Inorg.Mater.), 2010, 25(3):230.
[65] 李学良(Li X L), 王凯(Wang K), 肖正辉(Xiao Z H), 刘庆海(Liu Q H). 硅酸盐学报(J. China.Cerumic Soc.), 2012, 40(2):261.
[66] Huang H, Yin S C, Nazarz L F. Electrochemical and Solid-State Letters, 2001, 4(10):A170.
[67] Zhou J, Liu B H, Li Z P. Solid State Ionics, 2013, 244:23.
[68] Zhang H, Liu D, Qian X Z, Zhao C J, Xu Y L. Journal of Power Sources, 2014, 249:431.
[69] Zhou Y K, Wang J, Hu Y Y, O'Hayre R, Sha Z P. Chemical Communications, 2010, 46:7151.
[70] Dhindsa K S, Mandal B P, Bazzi K, Lin M W, Nazri M, Nazri G A, Naik V M, Garg V K, Oliveira A C, Vaishnava P, Naika R, Zhou Z X. Solid State Ionics, 2013, 253:94.
[71] Mun J Y, Ha H W, Choi W C. Journal of Power Sources, 2014, 251:386.
[72] Liang F, Yao Y C, Dai Y N, Yang B, Ma W H, Watanabe T. Solid State Ionics, 2012, 214:31.
[73] Choi D, Kumta P N. Journal of Power Sources, 2007, 163:1064.
[74] Bazzi K, Dhindsa K S, Dixit A, Sahana M B, Sudakar C.Journal of Materials Research, 2012, 27(2):424.
[75] Bazzi K, Mandal B P, Nazri M, Naik V M, Garg V K, Oliveira A C, Vaishnava P P, Nazri G A, Naik R. Journal of Power Sources, 2014, 265:67.
[76] Ni L, Zheng J G, Qin C C, Lu Y W, Liu P X, Wu T F, Tang Y F, Chen Y F. Electrochimica Acta, 2014, 147:330.
[77] Sivakumar M, Muruganantham R, Subadevi R. Applied Surface Science, 2015, 337:234.
[1] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[2] Zhao Tao1,2 Sun Rong2 Leng Jing2,3 Du Ruxu2,3 Zhang Zhijun1**. Liquid-Phase Synthesis of Ferrimagnetic/Ferromagnetic NanoMaterials [J]. Progress in Chemistry, 2007, 19(11): 1703-1709.
[3]

Qu Yinbo**

. Industrialization of Cellulosic Ethanol [J]. Progress in Chemistry, 2007, 19(0708): 1098-1108.