中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1732-1742 DOI: 10.7536/PC160936 Previous Articles   Next Articles

• Review and comments •

Cucurbituril-Based Supramolecular Nanoreactors/Catalysts

Gong Wanjun, Zhao Zhiyong, Liu Simin*   

  1. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21472143) and Thousand Youth Talents Program of China.
PDF ( 1116 ) Cited
Export

EndNote

Ris

BibTeX

Cucurbit[n] urils (CB[n] s), as a kind of rapidly developing supramolecular hosts, have been attracting more and more attentions. With their rigid structures, hydrophobic cavities and electronegative carbonyl groups on the portals, CB[n] s show their unique recognition properties——high selectivity and high binding affinity toward organic cations. In the past decade, CB[n] s have been utilized not only in basic recognition research but also in the construction of complicated three-dimensional materials and even in drug delivery systems. Besides, CB[n] s have been creatively used to control the reaction process and have obtained numerous successes. Herein, this review mainly describes the use of cucurbiturils as supramolecular nanoreactors/catalysts to accelerate or control the reaction process in thermal reactions as well as photoreactions. Moreover, the inhibition effect on guest's activity caused by the encapsulation inside cucurbiturils is also discussed.

Contents
1 Introduction
2 CB[n]s used as supramolecular nanoreactors/catalysts in thermal reactions
2.1 [3+2] cycloaddition reactions
2.2 Solvolysis reactions
2.3 Oxidation reactions
2.4 Other thermal reactions
3 [n]s used as supramolecular nanoreactors/catalysts in photoreactions
3.1 [2+2] cycloaddition reactions
3.2 [4+4] cycloaddition reactions
3.3 Other photoreactions
4 CB[n]s used as inhibiting agents
4.1 Protective agents
4.2 Toxicity inhibitors
4.3 Reaction inhibitors
5 Conclusion

CLC Number: 

[1] Breslow R. J. Biol. Chem., 2009, 284:1337.
[2] Turro N J. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:10766.
[3] Vriezema D M, Comellas A M, Elemans J A, Cornelissen J J, Rowan A E, Nolte R J. Chem. Rev., 2005, 105:1445.
[4] Davis A V, Yeh R M, Raymond K N. Proc. Natl. Acad. Sci. U.S.A., 2002, 99:4793.
[5] Tabushi I. Acc. Chem. Res., 1982, 15:66.
[6] Breslow R. Acc. Chem. Res., 1995, 28:146.
[7] Garcia H, Ferrer B. Metal Organic Frameworks as Heterogeneous Catalysts. 2013. 365.
[8] Cram D J, Cram J M. Container Molecules and Their Guests. Cambridge:The Royal Society of Chemistry, 1994.
[9] Zarra S, Wood D M, Roberts D A, Nitschke J R. Chem. Soc. Rev., 2015, 44:419.
[10] Yang Z, Ji H. ACS Sustain. Chem. Eng., 2013, 1:1172.
[11] Jiang H, Yang Z, Zhou X, Fang Y, Ji H. Chin. J. Chem. Eng., 2012, 20:784.
[12] Doyagüez E G, Rodríguez-Hernández J, Corrales G, Fernández-Mayoralas A, Gallardo A. Macromolecules, 2012, 45:7676.
[13] Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R. Int. J. Pharm., 2013, 443:262.
[14] Crupi V, Fontana A, Majolino D, Mele A, Melone L, Punta C, Rossi B, Rossi F, Trotta F, Venuti V. J. Inclusion Phenom.Macrocyclic Chem., 2014, 80:69.
[15] Crupi V, Fontana A, Giarola M, Longeville S, Majolino D, Mariotto G, Mele A, Paciaroni A, Rossi B, Trotta F, Venuti V. J. Phys. Chem. B, 2014, 118:624.
[16] Tejashri G, Amrita B, Darshana J. Acta Pharmaceutica, 2013, 63:335.
[17] Kang J, Rebek J. Nature, 1997, 385:50.
[18] Conn M M, Rebek J. Chem. Rev., 1997, 97:1647.
[19] Rebek J. Chem. Soc. Rev., 1996, 25:255.
[20] Yoshizawa M, Tamura M, Fujita M. J. Am. Chem. Soc., 2004, 126:6846.
[21] Pluth M D, Bergman R G, Raymond K N. Science, 2007, 316:85.
[22] Brown C J, Bergman R G, Raymond K N. J. Am. Chem. Soc., 2009, 131:17530.
[23] Wang Z J, Brown C J, Bergman R G, Raymond K N, Toste F D. J. Am. Chem. Soc., 2011, 133:7358.
[24] Wang Z J, Clary K N, Bergman R G, Raymond K N, Toste F D. Nat. Chem., 2013, 5:100.
[25] Kaphan D M, Levin M D, Bergman R G, Raymond K N, Toste F D. Science, 2015, 350:1235.
[26] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103:2.
[27] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122:540.
[28] Liu S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127:16798.
[29] Cheng X J, Liang L L, Chen K, Ji N N, Xiao X, Zhang J X, Zhang Y Q, Xue S F, Zhu Q J, Ni X L, Tao Z. Angew. Chem. Int. Ed., 2013, 52:7252.
[30] Li Q, Qiu S C, Zhang J, Chen K, Huang Y, Xiao X, Zhang Y, Li F, Zhang Y Q, Xue S F, Zhu Q J, Tao Z, Lindoy L F, Wei G. Org. Lett., 2016, 18:4020.
[31] Cao L, Sekutor M, Zavalij P Y, Mlinaric-Majerski K, Glaser R, Isaacs L. Angew. Chem. Int. Ed., 2014, 53:988.
[32] Han B H, Liu Y. Chin. J. Org. Chem., 2003, 23:139.
[33] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44:4844.
[34] Isaacs L. Chem. Commun., 2009, 619.
[35] Pemberton B C, Raghunathan R, Volla S, Sivaguru J. Chem.-Eur. J., 2012, 18:12178.
[36] Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. RSC Adv., 2012, 2:1213.
[37] Liu Y, Yang H, Wang Z, Zhang X. Chem.-Asian J., 2013, 8:1626.
[38] Ni X L, Xiao X, Cong H, Liang L L, Cheng K, Cheng X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Chem. Soc. Rev., 2013, 42:9480.
[39] Barrow S J, Kasera S, Rowland M J, Del Barrio J, Scherman O A. Chem. Rev., 2015, 115:12320.
[40] Assaf K I, Nau W M. Chem. Soc. Rev., 2015, 44:394.
[41] Liu Y, Yang H, Wang Z, Zhang X. Chem.-Asian J., 2013, 8:1626.
[42] Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127:15959.
[43] Liu S, Zavalij P Y, Lam Y F, Isaacs L. J. Am. Chem. Soc., 2007, 129:11232.
[44] Liu S, Wu X, Huang Z, Yao J, Liang F, Wu C. J. Inclusion Phenom.Macrocyclic Chem., 2004, 50:203.
[45] Cong H, Tao Z, Xue S F, Zhu Q J. Curr. Org. Chem., 2011, 15:86.
[46] Mock W L, Irra T A, Wepsiec J P, Adhya M. J. Org. Chem., 1989, 54:5302.
[47] Tuncel D, Steinke J H. Chem. Commun., 2002, 496.
[48] Tuncel D, Cindir N, Koldemir U. J. Inclusion Phenom.Macrocyclic Chem., 2006, 55:373.
[49] Tuncel D, Oezsar O, Tiftik H B, Salih B. Chem. Commun., 2007, 1369.
[50] Krasia T C, Steinke J H. Chem. Commun., 2002, 22.
[51] Wang K, Yee C C, Au-Yeung H Y. Chem. Sci., 2016, 7:2787.
[52] Ke C, Smaldone R A, Kikuchi T, Li H, Davis A P, Stoddart J F. Angew. Chem. Int. Ed., 2013, 52:381.
[53] Ke C, Strutt N L, Li H, Hou X, Hartlieb K J, Mcgonigal P R, Ma Z, Iehl J, Stern C L, Cheng C, Zhu Z, Vermeulen N A, Meade T J, Botros Y Y, Stoddart J F. J. Am. Chem. Soc., 2013, 135:17019.
[54] Hou X, Ke C, Cheng C, Song N, Blackburn A K, Sarjeant A A, Botros Y Y, Yang Y W, Stoddart J F. Chem. Commun., 2014, 50:6196.
[55] Finbloom J A, Slack C C, Bruns C J, Jeong K, Wemmer D E, Pines A, Francis M B. Chem. Commun., 2016, 52:3119.
[56] Hou X S, Ke C F, Bruns C J, Mcgonigal P R, Pettman R B, Stoddart J F. Nat. Commun., 2015, 6:9.
[57] Basilio N, Garcia-Rio L, Moreira J A, Pessego M. J. Org. Chem., 2010, 75:848.
[58] Klock C, Dsouza R N, Nau W M. Org. Lett., 2009, 11:2595.
[59] Cong H, Zhao F F, Zhang J X, Zeng X, Tao Z, Xue S F, Zhu Q J. Catal. Commun., 2009, 11:167.
[60] Wang Y H, Cong H, Zhao F F, Xue S F, Tao Z, Zhu Q J, Wei G. Catal. Commun., 2011, 12:1127.
[61] Cong H, Li Z J, Wang Y H, Tao Z, Yamato T, Xue S F, Wei G. J. Mol. Catal. A:Chem., 2013, 374:32.
[62] Cong H, Chen Q, Geng Q, Tao Z, Yamato T. Chin. J. Chem., 2015, 33:545.
[63] Cong H, Yamato T, Tao Z. J. Mol. Catal. A:Chem., 2013, 379:287.
[64] Cong H, Yamato T, Tao Z. New J. Chem., 2013, 37:3778.
[65] Cao M, Lin J, Yang H, Cao R. Chem. Commun., 2010, 46:5088.
[66] Cao M, Wu D, Gao S, Cao R. Chem.-Eur. J., 2012, 18:12978.
[67] Zhao G, Wang Z, Wang R, Li J, Zou D P, Wu Y J. Tetrahedron Lett., 2014, 55:5319.
[68] Reddy K R K K, Cavallini T S, Demets G J F, Silva L F. New J. Chem., 2014, 38:2262.
[69] Bruno S M, Gomes A C, Oliveira T S M, Antunes M M, Lopes A D, Valente A A, Goncalves I S, Pillinger M. Org. Biomol. Chem., 2016, 14:3873.
[70] Zheng L, Sonzini S, Ambarwati M, Rosta E, Scherman O A, Herrmann A. Angew. Chem. Int. Ed., 2015, 54:13007.
[71] Sashuk V, Butkiewicz H, Fialkowski M, Danylyuk O. Chem. Commun., 2016, 52:4191.
[72] Jiao Y, Li W L, Xu J F, Wang G, Li J, Wang Z, Zhang X. Angew. Chem. Int. Ed., 2016, 55:8933.
[73] Jon S Y, Ko Y H, Park S H, Kim H J, Kim K. Chem. Commun., 2001, 1938.
[74] Pattabiraman M, Natarajan A, Kaliappan R, Mague J T, Ramamurthy V. Chem. Commun., 2005, 4542.
[75] Pattabiraman M, Natarajan A, Kaanumalle L S, Ramamurthy V. Org. Lett., 2005, 7:529.
[76] Pattabiraman M, Kaanumalle L S, Natarajan A, Ramamurthy V. Langmuir, 2006, 22:7605.
[77] Maddipatla M V, Kaanumalle L S, Natarajan A, Pattabiraman M, Ramamurthy V. Langmuir, 2007, 23:7545.
[78] Maddipatla M V S N, Pattabiraman M, Natarajan A, Srivastav K, Mague J T, Ramamurthy V. Org. Biomol. Chem., 2012, 10:9219.
[79] Gromov S P, Vedernikov A I, Kuz'mina L G, Kondratuk D V, Sazonov S K, Strelenko Y A, Alfimov M V, Howard J a K. Eur. J. Org. Chem., 2010, 2010:2587.
[80] Barooah N, Pemberton B C, Johnson A C, Sivaguru J. Photochem. Photobiol. Sci., 2008, 7:1473.
[81] Wu X L, Luo L, Lei L, Liao G H, Wu L Z, Tung C H. J. Org. Chem., 2008, 73:491.
[82] Chen B, Cheng S F, Liao G H, Li X W, Zhang L P, Tung C H, Wu L Z. Photochem. Photobiol. Sci., 2011, 10:1441.
[83] Lei L, Luo L, Wu X L, Liao G H, Wu L Z, Tung C H. Tetrahedron Lett., 2008, 49:1502.
[84] Yang H, Ma Z, Wang Z, Zhang X. Polym. Chem., 2014, 5:1471.
[85] Yang H, Liu Y, Liu K, Yang L, Wang Z, Zhang X. Langmuir, 2013, 29:12909.
[86] Yang C, Mori T, Origane Y, Ko Y H, Selvapalam N, Kim K, Inoue Y. J. Am. Chem. Soc., 2008, 130:8574.
[87] Biedermann F, Ross I, Scherman O A. Polym. Chem., 2014, 5:5375.
[88] Wang R, Yuan L, Macartney D H. J. Org. Chem., 2006, 71:1237.
[89] Smitka J, Lemos A, Porel M, Jockusch S, Belderrain T R, Tesarova E, Da-Silva J P. Photochem. Photobiol. Sci., 2014, 13:310.
[90] Saleh N, Koner A L, Nau W M. Angew. Chem. Int. Ed., 2008, 47:5398.
[91] Cong H, Li C R, Xue S F, Tao Z, Zhu Q J, Wei G. Org. Biomol. Chem., 2011, 9:1041.
[92] Ren H, Huang Z, Yang H, Xu H, Zhang X. ChemPhysChem, 2015, 16:523.
[93] Berbeci L S, Wang W, Kaifer A E. Org. Lett., 2008, 10:3721.
[94] Oun R, Floriano R S, Isaacs L, Rowan E G, Wheate N J. Toxicol. Res., 2014, 3:447.
[95] Li S, Chen H, Yang X, Bardelang D, Wyman I W, Wan J, Lee S M Y, Wang R. ACS Med. Chem. Lett., 2015, 6:1174.
[96] Ma D, Zhang B, Hoffmann U, Sundrup M G, Eikermann M, Isaacs L. Angew. Chem. Int. Ed., 2012, 51:11358.
[97] Hoffmann U, Grosse-Sundrup M, Eikermann-Haerter K, Zaremba S, Ayata C, Zhang B, Ma D, Isaacs L, Eikermann M. Anesthesiology, 2013, 119:317.
[98] Miskolczy Z, Megyesi M, Tarkanyi G, Mizsei R, Biczok L. Org. Biomol. Chem., 2011, 9:1061.
[99] Masson E, Shaker Y M, Masson J P, Kordesch M E, Yuwono C. Org. Lett., 2011, 13:3872.
[100] Parente-Carvalho C, Norouzy A, Ribeiro V, Nau W M, Pischel U. Org. Biomol. Chem., 2015, 13:2866.
[101] Yang H, Liu Y, Yang L, Liu K, Wang Z, Zhang X. Chem. Commun., 2013, 49:3905.
[102] 董运红(Dong Y H), 曹利平(Cao L P). 化学进展(Progross in Chemistry), 2016, 28:1039.
[103] Li Q, Qiu S C, Chen K, Zhang Y, Wang R, Huang Y, Tao Z, Zhu Q J, Liu J X. Chem. Commun., 2016, 52:2589.
[104] Liu S, Shukla A D, Gadde S, Wagner B D, Kaifer A E, Isaacs L. Angew. Chem. Int. Ed., 2008, 47:2657.
[105] Gong W, Yang X, Zavali P Y, Isaacs L, Zhao Z, Liu S. Chem.-Eur.J., 2016, 22:17612.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.