中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 285-292 DOI: 10.7536/PC160925 Previous Articles   Next Articles

• Review •

Catalysts for Stereoselective Polymerization of Polar Vinyl Monomer

Tieqi Xu*   

  1. School of Chemistry, Dalian University of Technology, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274015, 21574016) and the Program for Liaoning Excellent Talents in University (No.LJQ2015025).
PDF ( 719 ) Cited
Export

EndNote

Ris

BibTeX

The polar monomer is an olefin monomer with polar group. It includes polar monomer with halogen, polar monomer with oxygen atom, polar monomer with nitrogen atom, and polar monomer with phosphorus atom. The polar vinyl monomer is monomer with conjugated vinyl group and polar group. The polymerization of polar vinyl monomer produces a polymer with polar group. This polymer has obvious advantages over the traditional non-polar polyolefin materials in terms of viscosity, toughness, interfacial properties (dyeing and printing), and compatibility with solvents or other polymers. In order to obtain polymer with good physical properties, it is a hot spot to get a polymer with certain degree of regularity. The structure of the polymer has a significant impact on its physical properties, such as melting point, glass transition temperature and mechanical properties. The most effective way to obtain the stereoregular polymer is the development of the stereoselective catalysts for polar vinyl polymeization. This paper reviews the recent research progress in stereoselective catalysts for the polar vinyl monomer polymerization, the polar vinyl monomers involved include:methacrylate, methacrylamide, vinylphosphonate, vinyl pyridine, 2-isopropenyl-2-oxazoline and heteo-atom substituted styrene. The polymerization system includes the coordination polymerization, the Lewis pair, and the anionic polymerization system.

Contents
1 Introduction
2 Methacrylate and methylene-butyrolactone polymerization
2.1 Methyl methacrylate polymerization
2.2 Methylene-butyrolactone polymerization
2.3 Polar divinyl monomer polymerization
3 Methacrylamide and vinylphosphonate polymerization
4 Vinylpyridine and 2-isopropenyl-2-oxazoline polymerization
5 Hetero-atom substituted styrene polymerization
6 Copolymerization of ethylene and polar vinyl monomer
7 Conclusion

CLC Number: 

[1] Chen E Y X. Chem. Rev., 2009, 109:5157.
[2] Rodriguez-Delgado A, Chen E Y X. Macromolecules, 2005, 38:2587.
[3] Bolig A D, Chen E Y X. J. Am. Chem. Soc., 2004, 126:4897.
[4] Rosal I D, Tschan M J L, Gauvin R M, Maron L, Thomas C M.Polym. Chem., 2012, 3:1730.
[5] Chen Y, Liu Y, Zhang X, Zhang Z, Liu L, Fan D, Ding L, Lv X. Inorg. Chem. Comm., 2015, 53:1.
[6] Buchowicz W, Conder J, Hryciuk D, Zachara J. J. Mol. Cat. A, 2014, 381:16.
[7] Zhang Y, Miyake G M, Chen E Y X. Angew. Chem., Int. Ed., 2010, 49:10158.
[8] Zhang Y, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Dalton Trans., 2012, 41:9119.
[9] Zhang Y, Ning Y, Caporaso L, Cavallo L, Chen E Y X. J. Am. Chem. Soc., 2010, 132:2695.
[10] Escudé N C, Ning Y, Chen E Y X. Polym. Chem., 2012, 3:3247.
[11] Gowda R R, Caporaso L, Cavallo L, Chen E Y X. Organometallics, 2014, 33:4118.
[12] Xu T,Chen E Y X. J. Am. Chem. Soc., 2014, 136:1774.
[13] Hu Y, Wang X, Chen Y, Caporaso L, Cavallo L, Chen E Y X. Organometallics, 2013, 32:1459.
[14] Chen X, Caporaso L, Cavallo L, Chen E Y X. J. Am. Chem. Soc., 2012, 134:7278.
[15] Hu Y, Miyake G M, Wang B, Cui D, Chen E Y X. Chem.-Eur. J., 2012, 18:3345.
[16] Hu Y, Xu X, Zhang Y, Chen Y, Chen E Y X. Macromolecules,2010, 43:9328.
[17] Miyake G M, Newton S E, Mariott W R, Chen E Y X. Dalton Trans., 2010, 39:6710.
[18] Mohan Y M, Rauhunadh V, Sivaram S, Baskaran D. Macromolecules, 2012, 45:3387.
[19] Tannka S, Matsumoto M, Goseki R, Ishizone T, Hirao A. Macromolecules, 2013, 46:146.
[20] Tannka S, Goseki R, Ishizone T, Hirao A. Macromolecules, 2014, 47:2333.
[21] Jia Y B, Ren W M, Liu S J, Xu T Q, Wang Y B, Lu X B. ACS Macro Lett., 2014, 3:896.
[22] Chen J, Chen E Y X. Isr. J. Chem., 2015, 55:216.
[23] Xu T, Liu J, Lu X B. Macromolecules, 2015, 48:7428.
[24] Xu T, Liu J, Liu Y. Polyhedron, 2016, 113:50.
[25] Vidal F, Gowda R R, Chen E Y X. J. Am. Chem. Soc., 2015, 137:9469.
[26] Vidal F, Falivene L, Caporaso L, Cavallo L, Chen E Y X. J. Am. Chem. Soc., 2016, 138:9533.
[27] Mariott W R, Chen E Y X. Macromolecules, 2004, 37:4741.
[28] Mariott W R, Chen E Y X. Macromolecules, 2005, 38:6822.
[29] Miyake G M, Caporaso L, Cavallo L, Chen E Y X. Macromolecules, 2009, 42:1462.
[30] Komber H, Steinert V, Voit B. Macromolecules, 2008, 41:2119.
[31] Seemann U B, Dengler J E, Rieger B. Angew. Chem., Int. Ed., 2010, 122:3567.
[32] Salzinger S, Seemann U B, Plikhta A, Rieger B. Macromolecules, 2011, 44:5920.
[33] Rabe G W, Komber H, Haüssler L, Kreger K, Lattermann G. Macromolecules, 2010, 43:1178.
[34] Natta G, Mazzanti G, Longi P, Dall'Asta G, Bernardini F. J. Polym. Sci., 1961, 51:487.
[35] Natta G, Mazzanti G, Dall'Asta G, Longi P. Macromol. Chem., 1960, 37:160.
[36] He J, Zhang Y, Chen E Y X. Synlett, 2014, 25:1534.
[37] Zhang N, Salzinger S, Soller B S, Rieger B. J. Am. Chem. Soc., 2013, 135:8810.
[38] Altenbuchner P T, Soller B S, Kissling S, Bachmann T, Kronast A, Vagin S I, Rieger B. Macromolecules, 2014, 47:7742.
[39] Altenbuchner P T, Adams F, Kronast A, Herdtweck E, Pöthig A, Rieger B. Polym. Chem., 2015, 6:6796.
[40] Kronast A, Reiter D, Altenbuchner P T, Vagin S I, Rieger B. Macromolecules, 2016, 49:6260.
[41] Kaneko H, Nagae H, Tsurugi H, Mashima K. J. Am. Chem. Soc., 2011, 133:19626.
[42] Xu T Q, Yang G W, Lu X B. ACS Catal., 2016, 6:4907.
[43] Knaus M G M, Giuman M M, Pöthig A, Rieger B. J. Am. Chem. Soc., 2016, 138:7776.
[44] Natta G, Dall'Asta G, Mazzanti G, Casale A. Makromol. Chem., 1962, 58:217.
[45] Yuki H, Okamoto Y, Kuwae Y, Hatada K. J. Polym. Sci., Part A, 1969, 7:1933.
[46] Liu D, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D. Angew. Chem., Int. Ed., 2015, 54:5205.
[47] Liu D, Wang R, Wang M, Wu C, Wang Z, Yao C, Liu B, Wan X, Cui D. Chem. Commun., 2015, 51:4658.
[48] Xu G X, Chung T C. Macromolecules, 2000, 33:5803.
[49] Shi Z, Guo F, Li Y, Hou Z. J. Polym. Sci., Part A:Polym. Chem., 2015, 53:5.
[50] Johnson L K, Killian C M, Brookhart M. J. Am. Chem. Soc., 1995, 117:6414.
[51] Guo L, Chen C. Sci. China Chem., 2015, 58:1663.
[52] Guo L, Dai S, Sui X, Chen C. ACS Catal., 2016, 6:428.
[53] Dai S, Sui X, Chen C. Angew. Chem., Int. Ed., 2015, 54:9948.
[54] Dai S, Chen C. Angew. Chem., Int. Ed., 2016, 55:13281.
[55] Luo S, Vela J, Lief G R, Jordan R F. J. Am. Chem. Soc., 2007, 129:8946.
[56] Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J. Am. Chem. Soc., 2014, 136:11898.
[57] Jian Z, Baier M C, Mecking S. J. Am. Chem. Soc., 2015, 137:2836.
[58] Sui X, Dai S, Chen C. ACS Catal., 2015, 5:5932.
[59] Wu Z, Chen M, Chen C. Organometallics, 2016, 35:1472.
[60] Chen M, Yang B, Chen C. Angew. Chem., Int. Ed., 2015, 54:15520.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[14] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[15] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.