中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1824-1833 DOI: 10.7536/PC160908 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review and comments •

Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic

Tian Liang, Yao Chen, Wang Yihong*   

  1. College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 81571812) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.1107047002)
PDF ( 506 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, electrochemical biosensor technology has received more and more attention by the virtue of its unique detection, analysis methods and the potential applications in clinical diagnostic. Early detection of cancer biomarkers could diagnose specific diseases timely, and provide treatment for the disease before it develops into its later period to thereby increase survival rate of patients. Furthermore, biomarkers can be used to determine the recurrence of the disease and evaluate the follow-up period after chemotherapy, radiotherapy and surgery. In this paper, we mainly discuss the existing equipment and methods of the cancer biomarkers detection, and briefly comment on the advantages and disadvantages of these methods. In addition, we also introduce the development of in vitro diagnostic devices and the characteristics of electrochemical biosensor technology, and present the major biomarkers in early cancer stage. Furthermore, we also focus on the detection of clinical targeted biomarkers by electrochemical biological sensing technology. The future research direction and development trend of electrochemical biological sensing technology are prospected. According to present researches, electrochemical biological sensing technology possesses great application potential in the areas of in vitro diagnostic and detection of clinical cancer biomarkers. With these features, in vitro diagnostic devices become unique and of great significance, and electrochemical biological sensing technology is expected to be quite important in the field of biology, medicine, environment, and so on.

Contents
1 Introduction
2 Biosensor technology
3 Application of electrochemical biosensor technology
3.1 Electrochemical DNA biosensor
3.2 Electrochemical immunosensor
3.3 Circulating tumor cells (CTCs) electrochemical biosensor
3.4 Glucose electrochemical biosensor
3.5 Hydrogen peroxide electrochemical biosensor
3.6 Electrochemical biosensor for small molecules of metabolite detection
4 Conclusion

CLC Number: 

[1] Jin Z, Hildebrandt N. Trends in Biotechnology, 2012, 30:394.
[2] Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. BMC Bioinformatics, 2012, 13:134.
[3] D'Argenio V, Esposito M V, Telese A, Precone V, Starnone F, Nunziato M, Cantirllo P, Iorio M, Evangelista E, D'Aiuto M, Calabrese A, Frisso G, D'Aiuto G, Salvatore F. Clinica Chimica Acta, 2015, 9:221.
[4] Krishnendu S, Agasti S S, Chaekyu K, Li X N, Vincent M R. Chemical Reviews, 2012, 112:2739.
[5] Mph R S, Ms D N M, Phd A J D. Ca-A Cancer Journal for Clinicians, 2010, 60:277.
[6] Kamdje A H N, Etet P F S, Vecchio L, Muller J M, Krampera M, Lukong K E. Cellular Signalling, 2014, 26:2843.
[7] Ward C, Langdon S P, Mullen P, Harris A L, Harrison D J, Supuran C T, Kunkler L H. Cancer Treatment Reviews, 2013, 39:171.
[8] Tothill I E. Seminars in Cell & Developmental Biology, 2009, 20:55.
[9] Apar Kishor G, James L M. Oncologist, 2006, 11:481.
[10] 曹亚(Cao Y), 朱小立(Zhu X L), 赵婧(Zhao J), 李昊(Li H), 李根喜(Li G X). 化学进展(Progress in Chemistry), 2015, 1:1.
[11] Wu J, Fu Z, Yan F, Ju H. Trac Trends in Analytical Chemistry, 2007, 26:679.
[12] Soper S, Brown K, Ellington A, Frazier B, Manero G G, Gau V, Gutman S I, Hayes D F, Korte B, Lander J L, Larson D, Ligler F, Majumdar A, Mascini M, Nolte D, Rosenzweig Z, Wang J, Wilson D. Biosensors & Bioelectronics, 2006, 21:1932.
[13] Lin J H, Ju H X. Biosensors & Bioelectronics, 2005, 20:1461.
[14] Sadik O A, Aluoch A O, Ailing Z. Biosensors & Bioelectronics, 2009, 24:2749.
[15] Nienhuis H H, Gaykema S B M, Timmer-Bosscha H, Jalving M, Brouwers A H, Lub-de Hoohe M N, van der Vegt B, Overmoyer B, de Vries E G E, Schroder C P. Pharmacology & Therapeutics, 2015, 147:63.
[16] Clotilde T. Nature, 2015, 523:161.
[17] Arya S K, Shekhar B. Chemical Reviews, 2011, 111:6783.
[18] Pina T C, Zapata I T, Hernandez F C, Lopez J B, Paricio P P, Hernandez P M. Clinica Chimica Acta, 2001, 305:27.
[19] Song Y, Huang Y Y, Liu X, Zhang X, Ferrari M, Qin L. Trends in Biotechnology, 2014, 32:132.
[20] Lin J, Feng Y, Ju H. Clinica Chimica Acta, 2004, 341:109.
[21] Kim D, Noh H, Park D, Ryu S, Koo J S, Shim Y. Biosensors & Bioelectronics, 2009, 25:456.
[22] Borisov S M, Wolfbeis O S. Chemical Reviews, 2008, 108:423.
[23] 黄露菡(Huang L H),杨瑞龙(Yang R L),郑妍(Zheng Y).广东畜牧兽医科技(Guangdong Journal of Animal & Veterinary Science), 2014, 39:50.
[24] Joseph W. Biosensors & Bioelectronics, 2006, 21:1887.
[25] Wilson M S, Nie W Y. Analytical Chemistry, 2006, 78:6476.
[26] Liu Y, Yuan R, Chai Y, Hong C, Liu K, Guan S. Microchimica Acta, 2009, 167:217.
[27] Li X, Yuan R, Chai Y, Zhang L, Zhuo Y, Zhang Y. Journal of Biotechnology, 2006, 123:356..
[28] Wilson M S. Analytical Chemistry, 2005, 77:1496.
[29] Greenberg A K, Lee M S. Current Opinion in Pulmonary Medicine, 2007, 13:249.
[30] Wang Y C, Hsu H S, Chen T P, Chen J T. Annals of the New York Academy of Sciences, 2006, 1075:179.
[31] Tang D, Yuan R, Chai Y. Biochemical Engineering Journal, 2004, 22:43.
[32] Miao X, Wang W, Kang T, Liu J, Shiu K K, Leung C H, Ma D L. Biosensors & Bioelectronics, 2016, 86:454.
[33] Tang H, Chen J H, Nie L H, Kuang Y F, Yao S Z. Biosensors & Bioelectronics, 2007, 22:1061.
[34] Asawatreratanakul P, Thavarungkul P. Analytica Chimica Acta, 2006, 561:55.
[35] Zhang X, Wu Y, Tu Y, Liu S. Analyst, 2008, 133:485.
[36] Liu Z, Yuan R, Chai Y, Zhuo Y, Hong C, Yang X. Sensors & Actuators B Chemical, 2008, 134:625.
[37] Prabhulkar S, Alwarappan S, Liu G, Li C. Biosensors & Bioelectronics, 2009, 24:3524.
[38] Viswanathan S, Rani C, Anand A, Ho J A. Biosensors & Bioelectronics, 2009, 24:1984.
[39] Fang W, Yang J, Wong D T W. Biosensors & Bioelectronics, 2013, 44C:115.
[40] Hu T, Zhang L, Wen W, Zhang X, Wang S. Biosensors & Bioelectronics, 2016, 77:451.
[41] Zhu W, Qin W, Atasoy U, Sauter E R. BMC Research Notes, 2009, 2:89.
[42] Bartel D P. Cell, 2004, 116:281.
[43] Weber J A, Baxter D H, Shile Z, Huang D Y, Huang K H, Lee M J, Wang K. Clinical Chemistry, 2010, 56:1733.
[44] Kai W, Shile Z, Bruz M, Pamela T, Amy B, Zhiyuan H, Leroy E H, David J G. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:4402.
[45] Economopoulou P, Dimitriadis G, Psyrri A. Cancer Treatment Reviews, 2015, 41:1.
[46] Jorde L B. Medical Genetics. Mosby, 2006. 263.
[47] Wang W T, Fan X J, Xu S H, Davis J J, Luo X L. Biosensors & Bioelectronics, 2015, 71:51.
[48] Rasheed P A, Sandhyarani N. Sensors & Actuators B Chemical, 2014, 204:777.
[49] Liu A, Zhong G, Chen J, Weng S, Huang H, Chen W, Lin L, Lei Y, Fu F, Sun Z, Lin X, Lin J, Yang S. Analytica Chimica Acta, 2013, 767:50.
[50] Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Chemical Society Reviews, 2016, 45:715.
[51] Geim A K, Novoselov K S. Nature Materials, 2007, 6:183.
[52] Chia X, Eng A Y S, Ambrosi A, Tan S M, Pumera M. Chemical Reviews, 2015, 115:11941.
[53] Zhang J, Wu D Z, Cai SX, Chen M, Xia Y K, Wu F, Chen J H. Biosensors & Bioelectronics, 2016, 75:452.
[54] Wu X Y, Chai Y Q, Yuan R, Su H L, Han J. Analyst, 2013, 138:1060.
[55] Liu L, Xia N, Liu H P, Kang X J, Liu X S, Xue C, He X L. Biosensors & Bioelectronics, 2014, 53:399.
[56] Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Manesh H N. Biosensors & Bioelectronics, 2016, 77:99.
[57] Heneghan H M, Miller N, Lowery A J, Sweeney K J, Newell J, Kerin M J. Annals of Surgery, 2010, 251:499.
[58] Yang J, Tang M, Diao W, Cheng W, Zhang Y, Yan Y. Microchim Acta, 2016, 183:3061.
[59] Chen C, Skog J, Hsu C H, Lessard R T, Balaj L, Wurdinger T, Carter B S, Breakefield X O, Toner M, Irimia D. Lab on A Chip, 2010, 10:505.
[60] Wei F, Liao W, Xu Z, Yang Y, Wong D T, Ho C M. Small, 2009, 5:1784.
[61] Fang W, Yang J, Wong D T W. Biosensors & Bioelectronics, 2013, 44:115.
[62] Wei F, Liao W, Xu Z, Yang Y, Wong D T, Ho C M. Small, 2009, 5:1784.
[63] Ali M A, Mondal K, Singh C, Malhotra B D, Sharma A. Nanoscale, 2015, 7:7234.
[64] Ravalli A, Rocha C G, Yamanaka H, Marrazza G. Bioelectrochemistry, 2015, 106:268.
[65] Pérez W I, Soto Y, Ramirez-Vick J E, Melendez E. Journal of Electroanalytical Chemistry, 2015, 751:49.
[66] Li C X, Qiu X Y, Deng K Q, Hou Z H. Analytical Methods, 2014, 6:9078.
[67] Xu MY, Luo X L, Davis J J. Biosensors & Bioelectronics, 2013, 39:21.
[68] Thiagarajan V, Madhurantakam S, Sethuraman S, Rayappan J B B, Krishnan U M. Journal of Colloid & Interface Science, 2016, 462:334.
[69] Zhu X L, Yang J H, Liu M, Wu Y, Shen Z M, Li G X. Analytica Chimica Acta, 2013, 764:59.
[70] Yan M, Sun G Q, Liu F, Lu J J, Yu J H, Song X R. Analytica Chimica Acta, 2013, 798:33.
[71] Zheng D Y, Zhu X J, Ding X R, Zhu X L, Yin Y M, Li G X. Talanta, 2013, 105:187.
[72] Zheng T T, Zhang Q F, Feng S, Zhu J J, Wang Q, Wang H. J. Am. Chem. Soc., 2014, 136:2288.
[73] Gu Z G, Yang S P, Li Z J, Sun X L, Wang G L, Fang Y J, Liu J K. Electrochimica Acta, 2011, 56:9162.
[74] Fang Y X, Zhang D, Guo Y, Guo Y M, Chen Q. Sensors and Actuators B:Chemical, 2015, 221:265.
[75] Zhao J, Yan Y L, Zhu L, Li X X, Li G X. Biosensors & Bioelectronics, 2013, 41:815.
[76] Zhu L L, Zhang Y, Xu P C, Wen W J, Li X X, Xu J Q. Biosensors & Bioelectronics, 2016, 80:601.
[77] Azzouzi S, Rotariu L, Benito A M, Maser W K, Ali M B, Bala C. Biosensors & Bioelectronics, 2015, 69:280.
[78] Nesakumar N, Thandavan K, Sethuraman S, Krishnan U M, Rayappan J B B. Journal of Colloid and Interface Science, 2014, 414:90.
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[4] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[5] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[6] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[7] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[8] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[9] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[10] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[11] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[12] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[13] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[14] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[15] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.