中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 127-136 DOI: 10.7536/PC160807 Previous Articles   Next Articles

• Review •

Fabrication and Applications of Polymeric Janus Particles

Wenzhong Zhai, Yufeng He*, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang*   

  1. Key Lab. Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21364012, 21263024).
PDF ( 1082 ) Cited
Export

EndNote

Ris

BibTeX

Polymeric Janus micro/nano-particles, which have anisotropic microstructures, can be widely applied in many fields, such as stabilizing emulsions, polymer mixing, controllable self-assembly, bio-medicines, heterogeneous catalysis and functional coatings. Therefore, the research on controlled fabrication and applications of polymeric Janus particles has been paid active attention in region of multifunctional and smart polymer materials. In this review, the progress of polymeric Janus particles in the past few years, such as synthetic strategies, stimulative responsibilities and applications, has been summarized. Their advantages and disadvantages have also been briefly discussed. The polymeric Janus particles with controllable sizes, microstructures and surface properties can be prepared via selective surface modifications, microfluidic synthesis, self-assembly, seed polymerization and other preparation strategies. However, the accurate fabrication and high yield of the particles in nanoscale are still a challenge. Stimulative responsibilities of polymeric Janus particles include pH-responsive property, temperature-responsive property, ion-responsive property, light-responsive property and other stimuli-responsive properties. Stimuli-responsive polymeric Janus particles possessing multicomponent structure have their special advantages in self-assembly and drug delivery. Seed polymerization as a simple and efficient strategy can be applied to prepare polymeric Janus surfactants in industrial production. The fabrication and applications of natural and multifunctional polymeric Janus particles are predicted finally as the development trends in the future.

Contents
1 Introduction
2 Synthesis strategies
2.1 Selective surface modifications
2.2 Microfluidic synthesis
2.3 Self-assembly
2.4 Seed polymerization
2.5 Other preparation strategies
2.6 Macromolecular Janus particles
3 Stimulative responsibilities
3.1 pH-responsive property
3.2 Temperature-responsive property
3.3 Ion-responsive property
3.4 Light-responsive property
3.5 Other stimuli-responsive properties
4 Applications
4.1 Solid surfactants
4.2 Building blocks
4.3 Bio-medicines
4.4 Janus films
4.5 Other applications
5 Conclusion

CLC Number: 

[1] de Gennes P G. Angew. Chem. Int. Ed., 1992, 31:842.
[2] Walther A, Müller A H E. Chem. Rev., 2013, 113:5194.
[3] Lattuada M, Hatton T A. Nano Today, 2011, 6:286.
[4] Cole-Hamilton D J. Science, 2010, 327:41.
[5] Schick I, Lorenz S, Gehrig D, Schilmann A M, Bauer H, Panthöfer M, Fischer K, Strand D, Laquai F, Tremel W. J. Am. Chem. Soc., 2014, 136:2473.
[6] Cox L M, Killgore J P, Li Z, Zhang Z, Hurley D C, Xiao J, Ding Y. Adv. Mater., 2014, 26:899.
[7] Lee K J, Yoon J, Lahann J. Curr. Opin. Colloid. In., 2011, 16:195.
[8] 周鹏(Zhou P),刘宝(Liu B),梁福鑫(Liang F X),王倩(Wang Q),屈小中(Qu X Z),杨振忠(Yang Z Z). 高等学校化学学报(Chemical Journal of Chinese Universities), 2015, 36:1431.
[9] Liang F, Zhang C, Yang Z. Adv. Mater., 2014, 26:6944.
[10] Percec V, Wilson D A, Leowanawat P, Wilson C J, Hughes A D, Kaucher M S, Hammer D A, Levine D H, Kim A J, Bates F S, Davis K P, Lodge T P, Klein M L, DeVane R H, Aqad E, Rosen B M, Argintaru A O, Sienkowska M J, Rissanen K, Nummelin S, Ropponen J. Science, 2010, 328:1009.
[11] Dupont J, Liu G. Soft Matter, 2010, 6:3654.
[12] Wang T, Chen S R, Jin F, Cai J H, Cui L Y, Zheng Y M, Wang J X, Song Y L, Jiang L. Chem. Commun., 2015, 51:1367.
[13] Ghoussoub Y E, Schlenoff J B. Langmuir, 2016, 32:3623.
[14] Tang C, Zhang C, Sun Y, Liang F, Wang Q, Li J, Qu X, Yang Z. Macromolecules, 2013, 46:188.
[15] Deng R, Liu S, Liang F, Wang K, Zhu J, Yang Z. Macromolecules, 2014, 47:3701.
[16] Zhao H, Liang F, Qu X, Wang Q, Yang Z. Macromolecules, 2015, 48:700.
[17] Yang H, Liang F, Chen Y, Wang Q, Qu X, Yang Z. NPG Asia Mater., 2015, 7:e176.
[18] Hu J, Zhou S, Sun Y, Fang X, Wu L. Chem. Soc. Rev., 2012, 41:4356.
[19] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interfaces, 2013, 5:1857.
[20] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissaa M, Elaissari A. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 439:35.
[21] 陈云华(Chen Y H),王朝阳(Wang C Y),李煜(Li Y),童真(Tong Z). 化学进展(Progress in Chemistry), 2009, 21:615.
[22] 刘善芹(Liu S Q),张毅军(Zhang Y J),邓仁华(Deng R H),梅路平(Mei L P). 科技导报(Science & Technology Review), 2016, 34:27.
[23] Nisisako T. Curr. Opin. Colloid. In., 2016, 25:1.
[24] 杨轶(Yang Y),叶伟(Ye W),陈晓(Chen X). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28:2525.
[25] Cho I, Lee K W J. Appl. Polym. Sci., 1985, 30:1903.
[26] Yabu H, Kanahara M, Shimomura M, Arita T, Harano K, Nakamura E, Higuchi T, Jinnai H. ACS Appl. Mater. Interfaces, 2013, 5:3262.
[27] Urban M, Freisinger B, Ghazy O, Staff R, Landfester K, Crespy D, Musyanovych A. Macromolecules, 2014, 47:7194.
[28] Weiss S, Hirsemann D, Biersack B, Ziadeh M, Müller A H E, Breu J. Polymer, 2013, 54:1388.
[29] Perro A, Reculusa S, Ravaine S, Bourgeat-Lamic E, Duguet E. J. Mater. Chem., 2005, 15:3745.
[30] Zhang J T, Chao X, Asher S A. J. Am. Chem. Soc., 2013, 135:11397.
[31] Poggi E, Bourgeois J P, Ernould B, Gohy J F. RSC Adv., 2015, 5:44218.
[32] Seidel P, Ravoo B J. Macromol. Chem. Phys., 2016, 217:1467.
[33] Yamagami T, Kitayama Y, Okubo M. Langmuir, 2014, 30:7823.
[34] Liu J, Liu G, Zhang M, Sun P, Zhao H. Macromolecules, 2013, 46:5974.
[35] Huang C, Shen X. Chem. Commun., 2014, 50:2646.
[36] Suzuki D, Tsuji S, Kawaguchi H. J. Am. Chem. Soc., 2007, 129:8088.
[37] Wu H, Yi W, Chen Z, Wang H, Du Q. Carbon, 2015, 93:473.
[38] Sokolovskaya E, Rahmani S, Misra A C, Bräse S, Lahann J. ACS Appl. Mater. Interfaces, 2015, 7:9744.
[39] Choi C H, Weitz D A, Lee C S. Adv. Mater., 2013, 25:2536.
[40] Cao X, Li W, Ma T, Dong H. RSC Adv., 2015, 5:79969.
[41] Sun X, Liu M, Xu Z. Talanta, 2014, 121:163.
[42] Hu Y, Wang S, Abbaspourrad A, Ardekani A M. Langmuir, 2015, 31:1885.
[43] Maeda K, Onoe H, Takinoue M, Takeuchi S. Adv. Mater., 2012, 24:1340.
[44] Hu Y, Wang J, Li C, Wang Q, Wang H, Zhu J, Yang Y. Langmuir, 2013, 29:15529.
[45] Yoon J, Kota A, Bhaskar S, Tuteja A, Lahann J. ACS Appl. Mater. Interfaces, 2013, 5:11281.
[46] Misra A C, Luker K E, Durmaz H, Luker G D, Lahann J. Biomacromolecules, 2015, 16:2412.
[47] Yoon J, Eyster T W, Misra A C, Lahann J. Adv. Mater., 2015, 27:4509.
[48] Jin Z, Fan H. Soft Matter, 2014, 10:9212.
[49] Gröschel A H, Müller A H E. Nanoscale, 2015, 7:11841.
[50] Erhardt R, Böker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller A H E. Macromolecules, 2001, 34:1069.
[51] Walther A, Müller A H E. Soft Matter, 2008, 4:663.
[52] Gröschel A H, Schacher F H, Schmalz H, Borisov O V, Zhulina E B, Walther A, Müller A H E. Nat. Commun., 2012, 3:710.
[53] Gröschel A H, Walther A, Löbling T I, Schacher F H, Schmalz H, Müller A H E. Nature, 2013, 503:247.
[54] Hiekkataipale P, Löbling T I, Poutanen M, Priimagi A, Abetz V, Ikkala O, Gröschel A H. Polymer, 2016, DOI:10.1016/j.polymer.2016.05.076.
[55] Deng R H, Liang F X, Zhou P, Zhang C L, Qu X Z, Wang Q, Zhu J T, Yang Z. Adv. Mater., 2014, 26:4469.
[56] Tran N, Mulet X, Hawley A M, Conn C E, Zhai J, Waddington L J, Drummond C J. Nano Lett., 2015, 15:4229.
[57] Skelhon T S, Chen Y, Bon S A F. Langmuir, 2014, 30:13525.
[58] Mock E B, Zukoski C F. Langmuir, 2010, 26:13747.
[59] Lu C, Urban M W. ACS Macro Lett., 2014, 3:346.
[60] Cheng Z, Luo F, Zhang Z, Ma Y Q. Soft Matter, 2013, 9:11392.
[61] Li B, Wang M, Chen K, Cheng Z, Chen G, Zhang Z. Macromol. Rapid. Comm., 2015, 36:1200.
[62] Li C, Wu Z M, He Y F, Song P F, Zhai W Z, Wang R M. J. Colloid Interf. Sci., 2014, 426:39.
[63] Zhai W Z, Li T, He Y F, Xiong Y B, Wang R M. RSC Adv., 2015, 5:76211.
[64] Zhai W Z, Wang B, Wang Y S, He Y F, Song P F, Wang R M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2016, 503:94.
[65] Choi C H, Kang S M, Jin S H, Yi H, Lee C S. Langmuir, 2015, 31:1328.
[66] Onishi S, Tokuda M, Suzuki T, Minami H. Langmuir, 2015, 31:674.
[67] Qi H, Wang W, Li C Y. ACS Macro Lett., 2014, 3:675.
[68] Wang L, Liu Y, He J, Hourwitz M J, Yang Y, Fourkas J T, Han X, Nie Z. Small, 2015, 11:3762.
[69] Babajani N, Kaulen C, Homberger M, Mennicken M, Waser R, Simon U, Karthäuser S. J. Phys. Chem. C, 2014, 118:27142.
[70] Huang X, Qian Q, Wang Y. Small, 2014, 10:1412.
[71] Xu Y, Wang L, Zhu X, Wang C Q. RSC Adv., 2016, 6:31053.
[72] Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. J. Am. Chem. Soc., 2013, 135:4765.
[73] Chen S Q, He C, Li H J, Li P Y, He W D. Polym. Chem., 2016, 7:2476.
[74] Yamashita N, Konishi N, Tanaka T, Okubo M. Langmuir, 2012, 28:12886.
[75] Synytska A, Ionov L. Part. Part. Syst. Charact., 2013, 30:922.
[76] Qi H, Zhou T, Mei S, Chen X, Li C Y. Macromolecules, 2015, 48:7256.
[77] Tu F, Lee D. J. Am. Chem. Soc., 2014, 136:9999.
[78] Zhao Z, Zhu F, Qu X, Wu Q, Wang Q, Zhang G, Liang F. Polym. Chem., 2015, 6:4144.
[79] Hashimoto C, Nagamoto A, Maruyama T, Kariyama N, Irisa Y, Ikehata A, Ozaki Y. Macromolecules, 2013, 46:1041.
[80] Besnard L, Marchal F, Paredes J F, Daillant J, Pantoustier N, Perrin P, Guenoun P. Adv. Mater., 2013, 25:2844.
[81] Yang L, Guo Y, Lei Z. J. Mater. Chem. A, 2015, 3:17098.
[82] Ge Z, Xu J, Hu J, Zhang Y, Liu S. Soft Matter, 2009, 5:3932.
[83] Chen Q, Whitmer J K, Jiang S, Bae S C, Luijten E, Granick S. Science, 2011, 331:199.
[84] Ji X, Zhang Q, Liang F, Chen Q, Qu X, Zhang C, Wang Q, Li J, Song X, Yang Z. Chem. Commun., 2014, 50:5706.
[85] Cao Z, Wang G, Chen Y, Liang F, Yang Z. Macromolecules, 2015, 48:7256.
[86] Zhou X, Du Y, Wang X. ACS Macro Lett., 2016, 5:234.
[87] Nisisako B T, Torii T, Takahashi T, Takizawa Y. Adv. Mater., 2006, 18:1152.
[88] Dong J, Zhou J. Macromol. Theory Simul., 2013, 22:174.
[89] Mitragotri S, Lahann J. Nat. Mater., 2009, 8:15.
[90] Lenis J, Razavi S, Cao K D, Lin B, Lee K Y C, Tu R S, Kretzschmar I. J. Am. Chem. Soc., 2015, 137:15370.
[91] Walther A, Matussek K, Müller A H E. ACS Nano, 2008, 2:1167.
[92] Ruhland T M, Gröschel A H, Ballard N, Skelhon T S, Walther A, Müller A H E, Bon S A F. Langmuir, 2013, 29:1388.
[93] Kumar A, Park B J, Tu F, Lee D. Soft Matter, 2013, 9:6604.
[94] Isa L, Samudrala N, Dufresne E R. Langmuir, 2014, 30:5057.
[95] Tanaka T, Okayama M, Minami H, Okubo M. Langmuir, 2010, 26:11732.
[96] Gröschel A H, Löbling T I, Petrov P D, Müllner M, Kuttner C, Wieberger F, Müller A H E. Angew. Chem. Int. Ed., 2013, 52:3602.
[97] Walther A, Hoffmann M, Müller A H E. Angew. Chem. Int. Ed., 2008, 47:711.
[98] Pham B T T, Such C H, Hawkett B S. Polym. Chem., 2015, 6:426.
[99] Moghani M M, Khomami B. Soft Matter, 2013, 9:4815.
[100] Skelhon T S, Chen Y, Bon S A F. Soft Matter, 2014, 10:7730.
[101] Bianchi E, Panagiotopoulos A Z, Nikoubashman A. Soft Matter, 2015, 11:3767.
[102] Khan I U, Serra C A, Anton N, Li X, Akasov R, Messaddeq N, Kraus I, Vandamme T F. Int. J. Pharm., 2014, 473:239.
[103] Yoshida M, Roh K H, Lahann J. Biomaterials, 2007, 28:2446.
[104] Rahmani S, Ross A M, Park T H, Durmaz H, Dishman A F, Prieskorn D M, Jones N, Altschuler R A, Lahann J. Adv. Healthcare Mater., 2016, 5:94.
[105] Chen B, Jia Y, Gao Y, Sanchez L, Anthony S M, Yu Y. ACS Appl. Mater. Interfaces, 2014, 6:18435.
[106] Han D, Xiao P, Gu J, Chen J, Cai Z, Zhang J, Wang W, Chen T. RSC Adv., 2014, 4:22759.
[107] Gu J, Xiao P, Chen J, Zhang J, Huang Y, Chen T. ACS Appl. Mater. Interfaces, 2014, 6:16204.
[108] Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. ACS Appl. Mater. Interfaces, 2015, 7:21218.
[109] Yi F, Xu F, Gao Y, Li H, Chen D. RSC Adv., 2015, 5:40227.
[110] Lv D, Ni W, Liang F, Wang Q, Qu X, Yang Z. Chinese J. Polym. Sci., 2015, 33:1344.
[111] Zhao L, Zhu L, Chen Y, Wang Q, Li J, Zhang C, Liang F, Qu X, Yang Z. Chem. Commun., 2013, 49:6161.
[1] Wanrong Zhou, Wei Sun*, Pinghui Yang. Preparation and Functional Application of Janus Particles [J]. Progress in Chemistry, 2018, 30(11): 1601-1614.