中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 252-261 DOI: 10.7536/PC160804 Previous Articles   Next Articles

• Review •

Applications of Organic Photochromic Materials in Rapid Visual Detection

Zhiming Huo, Gongke Li*, Xiaohua Xiao*   

  1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 21675178, 21475153, 21375155, 21675179), the Guangdong Provincial Natural Science Foundation (No.2015A030311020), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036), and the Guangzhou Minsheng Science and Technology Major Project of China (No.201604020165).
PDF ( 593 ) Cited
Export

EndNote

Ris

BibTeX

Featuring speed, selectivity and flexibility, Rapid Visual Detection (RVD) prevails widely in fields associated with analytical chemistry. RVD relies on reasonable sensors fabricating, which is designed to detect molecules of interest by following three steps:recognition, indication and processing. Among those with great effects, organic photochromic-based sensors advances fast in RVD related fields recently, for tunable recognizing units, chromic/fluorescent bi-stable indication and feasible quality/quantity dual-processing. This paper reviews the recent development and prospects the future potential of organic photochromic-based sensors.

Contents
1 Introduction
2 Applications of organic photochromic materials in rapid visual detection
2.1 Applications of coordination-based photochromic materials
2.2 Applications of reaction-based photochromic materials
2.3 [JP3]Applications of ‘gate-effect’-based photochromic materials
2.4 Applications of undefined-based photochromic materials
3 Conclusion

CLC Number: 

[1] You L, Zha D, Anslyn E V. Chem. Rev., 2015, 115(15):7840.
[2] Anslyn E V. J. Org. Chem., 2007, 72(3):687.
[3] Lehn J. Angew. Chem. Int. Edit., 1988, 27(1):89.
[4] Tsoucaris G, Lehn J. Current Challenges on Large Supramolecular Assemblies. Springer Netherlands, 1999. 417.
[5] Liu L, Wang A, Wang G, Li J, Zhou Y. Sensor Actuat. B-Chem., 2015, 215:388.
[6] Santra M, Roy B, Ahn K H. Org. Lett., 2011, 13(13):3422.
[7] Goestl R, Hecht S. Angew. Chem. Int. Edit., 2014, 53(33):8784.
[8] Lemieux V, Branda N R. Org. Lett., 2005, 7(14):2969.
[9] Sun X, James T D. Chem. Rev., 2015, 115(15):8001.
[10] Wan S, Zheng Y, Shen J, Yang W, Yin M S. ACS Appl. Mater. Inter., 2014, 6(22):19515.
[11] Raymo F M, Giordani S. J. Am. Chem. Soc., 2001, 123(19):4651.
[12] Vilela D, González M C, Escarpa A. Anal. Chim. Acta, 2012, 751:24.
[13] Ding Y, Tang Y, Zhu W, Xie Y. Chem. Soc. Rev., 2015, 44(5):1101.
[14] Liu H, Chen Y. Dyes Pigments, 2011, 89(3):212.
[15] Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D. Chem. Mater., 2005, 18(2):235.
[16] Straight S D, Andréasson J, Kodis G, Moore A L, Moore T A, Gust D. J. Am. Chem. Soc., 2005, 127(8):2717.
[17] Ita O, Sasaki Y, Yoshikawa Y, Watanabe A. J. Phys. Chem. B, 1995(99):9838.
[18] Brayshaw S K, Schiffers S, Stevenson A J, Teat S J, Warren M R, Bennett R D, Sazanovich I V, Buckley A R, Weinstein J A, Raithby P R. Chem.-Eur. J., 2011, 17(16):4385.
[19] Wong H, Tao C, Zhu N, Yam V W. Inorg. Chem., 2011, 50(2):471.
[20] Norsten T B, Branda N R. J. Am. Chem. Soc., 2001, 123(8):1784.
[21] Tissot A, Boillot M, Pillet S, Codjovi E, Boukheddaden K, Daku L M L. J. Phys. Chem. C, 2010, 114(49):21715.
[22] Irie M, Miyatake O, Uchida K, Eriguchi T. J. Am. Chem. Soc., 1994, 116(22):9894.
[23] Ohsumi M, Fukaminato T, Irie M. Chem. Commun., 2005,(31):3921.
[24] Irie M, Miyatake O, Uchida K. J. Am. Chem. Soc., 1992, 114(22):8715.
[25] Babu S S, Praveen V K, Ajayaghosh A. Chem. Rev., 2014, 114(4):1973.
[26] Lin Z, Ma Y, Zheng X, Huang L, Yang E, Wu C, Chow T J, Ling Q D. Dyes Pigments, 2015, 113:129.
[27] Valentine K. J, Parth K. P, Shelly H, Percy C, Yu Q, Karin Y C. Anal. Chem., 2014, 86(13):6184.
[28] Shao N, Wang H, Gao X, Yang R H, Chan W. Anal. Chem., 2010, 82(11):4628.
[29] Czarnik A W. In Instrumentation Science & Technology. American Chemical Society, 1993. 405.
[30] Yokoyama Y. Chem. Rev., 2000, 100(5):1717.
[31] Zhang J, Zou Q, Tian H. Adv. Mater., 2013, 25(3):378.
[32] Tian H, Yang S. Chem. Soc. Rev., 2004, 33(2):85.
[33] Sakai K, Imaizumi Y, Oguchi T, Sakai H, Abe M. Langmuir, 2010, 26(12):9283.
[34] Ai K, Liu Y, Lu L. J. Am. Chem. Soc., 2009, 131(27):9496.
[35] Cui L, Peng Z, Ji C, Huang J, Huang D, Ma J, Zhang S, Qian X, Xu Y. Chem. Commun., 2014, 50(12):1485.
[36] Nolan E M, Lippard S J. Chem. Rev., 2008, 108(9):3443.
[37] Cui S, Liu G, Pu S, Chen B. Dyes Pigments, 2013, 99(3):950.
[38] Klajn R. Chem. Soc. Rev., 2014, 43(1):148.
[39] Zhang X, Yin J, Yoon J. Chem. Rev., 2014, 114(9):4918.
[40] Chen X, Jin Q, Wu L, Tung C, Tang X. Angew. Chem. Int. Edit., 2014, 53(46SI):12542.
[41] Alex S A, Chandrasekaran N, Mukherjee A. Anal. Methods, 2016, 8(10):2131.
[42] Xing Z, Junji Z, Yi-Lun Y, Tian H, Long Y. Chem. Sci., 2014(5):2642.
[43] Lu Y, Liu Y, Zhang S, Wang S, Zhang S, Zhang X. Anal. Chem., 2013, 85(14):6571.
[44] Phillips J, Mueller A, Przystal F. J. Am. Chem. Soc., 1965,87(17):4020
[45] Hirsheberg Y. J. Am. Chem. Soc., 1956, 78(10):2304.
[46] Irie M, Fukaminato T, Matsuda K, Kobatake S. Chem. Rev., 2014, 114(24):12174.
[47] Hirshberg Y, Fischer E. J. Chem. Soc., 1953:629.
[48] Irie M, Mohri M. J. Org. Chem., 1988, 53(4):803.
[49] Uchida K, Nakayama Y, Irie M. Bull. Chem. Soc. Jpn. 1990, 63(5):1311.
[50] Irie M. Chem. Rev., 2000, 100(5):1685.
[51] Qin M, Huang Y, Li F, Song Y. J. Mater. Chem. C, 2015, 3(36):9265.
[52] He J, He J, Wang T, Zeng H P. J. Mater. Chem. C, 2014, 2(36):7531.
[53] Ogoshi T, Harada A. Sensors, 2008, 8(8):4961.
[54] Liu Z, Jiang L, Liang Z, Gao Y. Tetrahedron, 2006, 62(14):3214.
[55] Liang Z, Liu Z, Jiang L, Gao Y. Tetrahedron Lett., 2007, 48(9):1629.
[56] Inouye M, Ueno M, Kitao T, Tsuchiya K. J. Am. Chem. Soc., 1990,(112):8977.
[57] Inouye M, Akamatsu K, Nakazumi H. J. Am. Chem. Soc., 1997, 119(39):9160.
[58] Xia S, Liu G, Pu S. J. Mater. Chem. C, 2015, 3(16):4023.
[59] Pu S Z, Ding H, Liu G, Zheng C, Xu H. J. Phys. Chem. C, 2014, 118(13):7010.
[60] Ren J, Tian H. Sensors, 2007, 7(12):3166.
[61] Natali M, Soldi L, Giordani S. Tetrahedron, 2010, 66(38):7612.
[62] Huang S, Li Z, Li S, Yin J, Liu S. Dyes Pigments, 2012, 92(3):961.
[63] Cui S, Liu G, Pu S Z, Chen B. Dyes Pigments, 2013, 99(3):950.
[64] Shiraishi Y, Matsunaga Y, Hirai T. Chem. Commun., 2012, 48(44):5485.
[65] Xu L, Wang S, Lv Y, Son Y, Cao D R. Spectrochim. Acta. A, 2014, 128(0):567.
[66] Xue D, Zheng C, Fan C, Liu G, Pu S. J. Photoch. Photobio. A, 2015, 303:59.
[67] Mahapatra A K, Manna S K, Maiti K, Maji R, Das Mukhopadhyay C, Sarkar D, Mondal T K. RSC Adv., 2014, 4(69):36615.
[68] Li K, Li Y, Tao J, Liu L, Wang L, Hou H, Tong A J. Sci. Rep-Uk., 2015, 5:14467.
[69] Zou Q, Li X, Zhang J J, Zhou J, Sun B B. Chem. Commun., 2012, 48(15):2095.
[70] Zou Q, Li X, Ågren H. Dyes Pigments, 2014, 111:1.
[71] Cui S, Tian Z, Pu S Z, Dai Y. RSC Adv., 2016, 6(24):19957.
[72] Zhou Z, Xiao S, Xu J, Liu Z, Shi M, Li F, Yi T, Huang C. Org. Lett., 2006, 8(18):3911.
[73] Zhou Z, Yang H, Shi M, Xiao S, Li F Y, Yi T, Huang C C. ChemPhysChem, 2007, 8(9):1289.
[74] Zhou Z, Hu H, Yang H, Yi T, Huang K, Yu M, Li F Y, Huang C C. Chem. Commun., 2008(39):4786.
[75] Poon C, Lam W H, Wong H, Yam V W. Chem-Eur. J., 2015, 21(5):2182.
[76] Liu W, Pu S, Cui S, Liu G, Fan C. Tetrahedron, 2011, 67(23):4236.
[77] Pu S, Tong Z, Liu G, Wang R. J. Mater. Chem. C, 2013, 1(31):4726.
[78] Hammarson M, Nilsson J R, Li S, Beke-Somfai T, Andreasson J. J. Phys. Chem. B, 2013, 117(43):13561.
[79] Cui S, Pu S, Liu W, Liu G. Dyes Pigments, 2011, 91(3):435.
[80] Natali M, Giordani S. Org. Biomol. Chem., 2012, 10(6):1162.
[81] Jin J, Li X, Zhang J, Zhao P, Tian H. Isr. J. Chem., 2013, 53(5):288.
[82] Gunnlaugsson T, Glynn M, Tocci Née Hussey G M, Kruger P E, Pfeffer F M. Coordin. Chem. Rev., 2006, 250(23/24):3094.
[83] Dydio P, Lichosyt D, Jurczak J. Chem. Soc. Rev., 2011, 40(5):2971.
[84] Dubonosov A D, Bren V A, Minkin V I, Shepelenko E N, Tikhomirova K S, Starikov A G, Revinskii Y V. Tetrahedron, 2015, 71(46):8817.
[85] Jin J, Zhang J, Zou L, Tian H. Analyst, 2013, 138(6):1641.
[86] Shiraishi Y, Adachi K, Itoh M, Hirai T. Org. Lett., 2009, 11(15):3482.
[87] Sumiya S, Doi T, Hirai T, Shiraishi Y. Tetrahedron, 2012, 68(2):690.
[88] Schultz K P, Spivey D W, Loya E K, Kellon J E, Taylor L M, Tetrahedron Lett., 2016, 57(11):1296.
[89] Lorand J P, Edwards J O. J. Org. Chem., 1959, 6(24):769.
[90] Nagasaki T, Shinmori H, Shinkai S. Tetrahedron Lett., 1994, 35(14):2201.
[91] Goswami S, Das S, Aich K. RSC Adv., 2015, 5(37):28996.
[92] Fukaminato T, Irie M. Adv. Mater., 2006, 18(24):3225.
[93] Li X, Ma Y, Wang B, Li G. Org. Lett., 2008, 10(16):3639.
[94] Li X, Xu Y, Wang B, Son Y. Tetrahedron Lett., 2012, 53(9):1098.
[95] Liu H H, Chen Y. J. Photoch. Photobio. A, 2010, 215(1):103.
[96] Song B, Li H, Yang L, Zhao C, Sai H, Zhang S, Zhang F, Xiang J. J. Photoch. Photobio. A, 2012, 241:21.
[97] Mao Y, Liu K, Lv G, Wen Y, Zhu X, Lan H, Yi T. Chem. Commun., 2015, 51(30):6667.
[98] Liu K, Wen Y, Shi T, Li Y, Li F, Zhao Y, Huang C, Yi T. Chem. Commun., 2014, 50(65):9141.
[99] Wu Y, Chen S, Yang Y, Zhang Q, Xie Y, Tian H, Zhu W. Chem. Commun., 2012, 48(4):528.
[100] Wu Y, Zhu W, Wan W, Xie Y, Tian H, Li A D. Chem. Commun., 2014, 50(91):14205.
[101] Nourmohammadian F, Wu T Q, Branda N R. Chem. Commun., 2011, 47(39):10954.
[102] Poon C, Lam W H, Yam V W. J. Am. Chem. Soc., 2011, 133(49):19622.
[103] Liu W, Li Z, Hu F, Yin J, Yu G, Liu S H. Photochem. Photobiol. Sci., 2014, 13(12):1773.
[104] Huo Z, Li Z, Wang T, Zeng H P. Tetrahedron, 2013, 69(42):8964.
[105] Wang S, Shen W, Feng Y, Tian H. Chem. Commun., 2006(14):1497.
[1] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[2] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[3] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[4] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[5] Xing Liwen, Ma Zhanfang. Non-Enzymatic Electrochemical Sensors Based on Carbon Nanomaterials for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid [J]. Progress in Chemistry, 2016, 28(11): 1705-1711.
[6] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[7] Li Minrui, Guo Yongliang, Yang Baoping, Guo Junhong, Cui Jinfeng. Electrochemical Analyses of Anion Recognition Based on Urea Derivatives [J]. Progress in Chemistry, 2015, 27(5): 559-570.
[8] Sun Bing, Ai Shiyun. Fabrication and Application of Photoelectrochemical Sensor [J]. Progress in Chemistry, 2014, 26(05): 834-845.
[9] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[10] Weng Wen1** Han Jingli1 Chen Youzun1 Huang Xiaojia2. Progress in Chiral Sensors [J]. Progress in Chemistry, 2007, 19(11): 1820-1825.
[11] . Electrochemistry of Diamond Thin Film [J]. Progress in Chemistry, 2005, 17(01): 45-54.
[12] Wu Shikang. Some Photo-Chemical and Photo-Physical Problems in Fluorescent Chemical Sensor Study [J]. Progress in Chemistry, 2004, 16(02): 174-.
[13] Wang Li1,Shi Xianfa1,2**,Hu Xiaojun1,Liu Yu1. Research and Application of the Calixarenecontaining Polymer Materials [J]. Progress in Chemistry, 2002, 14(03): 217-.