中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1762-1773 DOI: 10.7536/PC160803 Previous Articles   Next Articles

• Review and comments •

Advances in Manipulation of Catalyst Structure and Relationship of Structure-Performance for Direct Propene Epoxidation with H2 and O2

Song Zhaoning1, Feng Xiang1*, Liu Yibin1, Yang Chaohe1, Zhou Xinggui2   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China;
    2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476263, 21606254), the Shandong Provincial Natural Science Foundation (No.2016ZRE28229), the Special Grade of China Postdoctoral Science Foundation (No.2016T90657),the China Postdoctoral Science Foundation (No.2015M582160) and the Postdoctoral Innovation Project of Shandong(No.201601011).
PDF ( 1352 ) Cited
Export

EndNote

Ris

BibTeX

Propylene oxide (PO), as the third largest propene derivative ranking behind polypropylene and acrylonitrile, is widely used in light industry, pharmaceutical and textile industries. Compared with traditional chlorohydrin and hydroperoxide processes, direct propene epoxidation with hydrogen and oxygen to synthesize PO has the advantages of being green, simple and profitable. It is therefore a current worldwide research hotspot. Herein, recent progress is reviewed with the purpose of solving remaining problems such as poor stability and low activity. Moreover, the effect of surface and structural properties of Ti-containing supports together with the morphologic and electronic effect of gold nanoparticles on catalytic activity and stability are introduced. The reaction mechanism and deactivation mechanism are further discussed. The influences of additives such as Cs, Ag, Pd, Pt, Ge, surface alkylation, ionic liquid and nitrogen doping on catalytic performance are summarized. The existing problems in direct propene epoxidation with H2 and O2 are also analyzed. In the end, possible solutions and directions from the aspects of selecting supports and improving catalytic performance are remarked.

Contents
1 Introduction
2 Effect of support properties
2.1 Different Ti-containing supports
2.2 Hydrophobicity of supports
2.3 Si/Ti molar ratio
3 Effect of properties of gold nanoparticles
3.1 Gold nanoparticle size
3.2 Gold active sites
3.3 Gold deposition location
4 Effect of promoters
5 Conclusion

CLC Number: 

[1] 唐绪龙(Kang X L), 蔡挺(Cai T), 张春玲(Zhang C L), 许晓东(Xu X D), 吴晓云(Wu X Y), 乔丽坤(Qiao L K). 现代化工(Modern Chemical Industry), 2013, 32(12):1.
[2] 刘波(Liu B), 张晓莉(Zhang X L), 赵丽(Zhao L), 王琪(Wang Q), 王芸(Wang Y). 当代化工(Contemporary Chemical Industry), 2016, 45(2):336.
[3] 薛金召(Xue J Z), 牛小娟(Niu X J), 汪希领(Wang X L), 王先锋(Wang X F), 申明(Shen M),郭秋强(Guo Q Q). 化工进展(Chemical Industry and Engineering Progress), 2015, 34(9):3500.
[4] 于春梅(Yu C M), 史广明(Shi G M). 石油化工技术与经济(Techno-Economics in Petrochemicals), 2015(3):1.
[5] Hayashi T, Tanaka K, Haruta M. J. Catal., 1998, 178:566.
[6] 张健(Zhang J), 谢妤(Xie Y), 牛志蒙(Niu Z M). 化工科技(Science & Technology in Chemical Industry), 2010, 18(3):75.
[7] 杨林(Yang L), 蔡挺(Cai T), 张春玲(Zhang C L), 许晓东(Xu X D), 吴晓云(Wu X Y). 广州化工(Guangzhou Chemical Industry), 2010, 38(6):28.
[8] 庞义军(Pang Y J), 陈晓晖(Chen X H), 许承志(Xu C Z), 雷阳军(Lei Y J), 魏可镁(Wei K M). 化学进展(Progress in Chemistry), 2014, 26(8):1307.
[9] Haruta M, Uphade B, Tsubota S, Miyamoto A. Res. Chem. Termediat., 1998, 24:329.
[10] Chen J, Halin S J, Pidko E A, Verhoeven M, Ferrandez D M P, Hensen E J, Schouten J C, Nijhuis T A. ChemCatChem, 2013, 5:467.
[11] Uphade B, Yamada Y, Akita T, Nakamura T, Haruta M. Appl. Catal. A Gen., 2001, 215:137.
[12] Uphade B, Akita T, Nakamura T, Haruta M. J. Catal., 2002, 209:331.
[13] Liu C H, Guan Y, Hensen E J, Lee J F, Yang C M. J. Catal., 2011, 282:94.
[14] Lu J, Zhang X, Bravo-Suárez J J, Bando K K, Fujitani T, Oyama S T. J. Catal., 2007, 250:350.
[15] Yang H, Tang D, Lu X, Yuan Y. J. Phys. Chem. C, 2009, 113:8186.
[16] Ren Y, Xu L, Zhang L, Wang J, Liu Y, He M, Wu P. Pure Appl. Chem., 2011, 84:561.
[17] Sinha A K, Seelan S, Tsubota S, Haruta M. Angew. Chem. Int. Edit., 2004, 43:1546.
[18] Kapoor M, Sinha A, Seelan S, Inagaki S, Tsubota S, Yoshida H, Haruta M. Chem. Commun., 2002, 23:2902.
[19] Lee W S, Akatay M C, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2012, 287:178.
[20] Feng X, Duan X, Qian G, Zhou X, Chen D, Yuan W. Appl. Catal. B-Environ., 2014, 150:396.
[21] Xu L, Ren Y, Wu H, Liu Y, Wang Z, Zhang Y, Xu J, Peng H, Wu P. J. Mater. Chem., 2011, 21:10852.
[22] Murzin D Y, Simakova O A, Simakova I L, Parmon V N. React. Kinet. Catal. L., 2011, 104:259.
[23] Qi C. Gold Bull., 2008, 41:224.
[24] Nijhuis T A, Visser T, Weckhuysen B M. J. Phys. Chem. B., 2005, 109:19309.
[25] Qi C, Akita T, Okumura M, Haruta M. Appl. Catal. A-Gen., 2001, 218:81.
[26] Sinha A, Seelan S, Tsubota S, Haruta M. Top. Catal., 2004, 29:95.
[27] Uphade B, Okumura M, Tsubota S, Haruta M. Appl. Catal. A-Gen., 2000, 190:43.
[28] Qi C, Akita T, Okumura M, Kuraoka K, Haruta M. Appl. Catal. A-Gen., 2003, 253:75.
[29] Sinha A, Seelan S, Akita T, Tsubota S, Haruta M. Appl. Catal. A-Gen., 2003, 240:243.
[30] Sinha A, Seelan S, Akita T, Tsubota S, Haruta M. Catal. Lett., 2003, 85:223.
[31] Qi C, Okumura M, Akita T, Haruta M. Appl. Catal. A-Gen., 2004, 263:19.
[32] Lu J, Zhang X, Bravo-Suárez J J, Tsubota S, Gaudet J, Oyama S T. Catal. Today, 2007, 123:189.
[33] Chowdhury B, Bravo-Suárez J, Tsubota S, Haruta M. Angew. Chem. Int. Ed., 2006, 118:426.
[34] Sinha A, Seelan S, Okumura M, Akita T, Tsubota S, Haruta M. J. Phys. Chem. B, 2005, 109:3956.
[35] Sacaliuc E, Beale A M, Weckhuysen B M, Nijhuis T A. J. Catal., 2007, 248:235.
[36] Chowdhury B, Bando K, Bravo-Suárez J, Tsubota S, Haruta M. J. Mol. Catal. A-Chem., 2012, 359:21.
[37] Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N, Ribeiro F H. J. Am. Chem. Soc., 2012, 134:4700.
[38] Zhan G, Du M, Sun D, Huang J, Yang X, Ma Y, Ibrahim A R, Li Q. Ind. Eng. Chem. Res., 2011, 50:9019.
[39] Huang J, Lima E, Akita T, Guzmán A, Qi C, Takei T, Haruta M. J. Catal., 2011, 278:8.
[40] Feng X, Duan X, Qian G, Zhou X, Chen D, Yuan W. J. Catal., 2014, 317:99.
[41] Lee W S, Akatay M C, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2013, 308:98.
[42] Du M, Zhan G, Yang X, Wang H, Lin W, Zhou Y, Zhu J, Lin L, Huang J, Sun D. J. Catal., 2011, 283:192.
[43] Huang J, Takei T, Akita T, Ohashi H, Haruta M. Appl. Catal. B-Environ., 2010, 95:430.
[44] Lu J, Zhang X, Bravo-Suárez J J, Fujitani T, Oyama S T. Catal. Today, 2009, 147:186.
[45] Liu Y, Zhang X, Suo J. Chinese J. Catal., 2013, 34:336.
[46] Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J. Catal., 2009, 267:202.
[47] Taylor B, Lauterbach J, Delgass W N. Catal. Today, 2007, 123:50.
[48] Cumaranatunge L, Delgass W N. J. Catal., 2005, 232:38.
[49] Yap N, Andres R, Delgass W. J. Catal., 2004, 226:156.
[50] Nijhuis T A, Huizinga B J, Makkee M, Moulijn J A. Ind. Eng. Chem. Res., 1999, 38:884.
[51] Lee W-S, Akatay M C, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2014, 313:104.
[52] Wu G, Wang Y, Wang L, Feng W, Shi H, Lin Y, Zhang T, Jin X, Wang S, Wu X. Chem. Eng. J., 2013, 215:306.
[53] Lu X, Zhao G, Lu Y. Catal. Sci. Technol., 2013, 3:2906.
[54] Wang X, Zhang X, Wang Y, Liu H, Wang J, Qiu J, Ho H L, Han W, Yeung K L. Chem. Eng. J., 2011, 175:408.
[55] Taylor B, Lauterbach J, Delgass W N. Appl. Catal. A Gen., 2005, 291:188.
[56] Bravo-Suárez J J, Bando K K, Lu J, Haruta M, Fujitani T, Oyama T. J. Phys. Chem. C, 2008, 112:1115.
[57] Feng X, Duan X, Yang J, Qian G, Zhou X, Chen D, Yuan W. Chem. Eng. J., 2015, 278:234.
[58] Qi C, Huang J, Bao S, Su H, Akita T, Haruta M. J. Catal., 2011, 281:12.
[59] Jin F, Lin T H, Chang C C, Wan B Z, Lee J F, Cheng S. RSC Adv., 2015, 5:61710.
[60] Williams W D, Shekhar M, Lee W S, Kispersky V, Delgass W N, Ribeiro F H, Kim S M, Stach E A, Miller J T, Allard L F. J. Am. Chem. Soc., 2010, 132:14018.
[61] Feng X, Chen D, Zhou X. RSC Adv., 2016, 6:44050.
[62] Overbury S, Schwartz V, Mullins D R, Yan W, Dai S. J. Catal., 2006, 241:56.
[63] Janssens T V, Clausen B S, Hvolbæk B, Falsig H, Christensen C H, Bligaard T, Nørskov J K. Top. Catal., 2007, 44:15.
[64] Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B, Perez A, Aires F C S. Surf. Sci., 1996, 367:276.
[65] Blatchford C G, Campbell J, Creighton J. Surf. Sci., 1982, 120:435.
[66] Weitz D, Huang J, Lin M, Sung J. Phys. Rev. Lett., 1985, 54:1416.
[67] Nijhuis T, Weckhuysen B. Catal. Today, 2006, 117:84.
[68] Ruiz A, van der Linden B, Makkee M, Mul G. J. Catal., 2009, 266:286.
[69] Feng X, Duan X, Cheng H, Qian G, Chen D, Yuan W, Zhou X. J. Catal., 2015, 325:128.
[70] Feng X, Liu Y, Li Y, Yang C, Zhang Z, Duan X, Zhou X, Chen D. AICh E J., 2016, 62(11):3963.
[71] Lu J Q, Li N, Pan X R, Zhang C, Luo M F. Catal. Commun., 2012, 28:179.
[72] Jin Q, Bao J, Sakiyama H, Tsubaki N. Res. Chem. Intermediat., 2011, 37:177.
[73] Zwijnenburg A, Saleh M, Makkee M, Moulijn J A. Catal. Today, 2002, 72:59.
[74] 杨佳(Yang J), 张志华(Zhang Z H), 冯翔(Feng X), 段学志(Duan X Z), 周静红(Zhou J H), 周兴贵(Zhou X G). 化工学报(CIESC Journal), 2016, 67(9):3684.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[13] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[14] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.
[15] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.