中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 119-126 DOI: 10.7536/PC160730 Previous Articles   Next Articles

• Review •

Organic Optoelectronic Materials for Photoacoustic Imaging

Xiaomei Lu1, Pengfei Chen1, Wenbo Hu2, Yufu Tang2, Wei Huang1,2*, Quli Fan2*   

  1. 1. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China;
    2. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61378081, 21574064, 21674048).
PDF ( 670 ) Cited
Export

EndNote

Ris

BibTeX

Newly emerging photoacoustic imaging (PAI) technology that couples the advantages of optical imaging and ultrasound imaging allows a fascinating non-invasive imaging paradigm with higher spatial resolution and deeper imaging deepness when compared with traditional optical imaging techniques (e.g., fluorescence). Typically, PA contrast agents, which convert the absorbed photon energy into ultrasonic emission, are essential for a successful PA imaging. Although naturally occurring absorbers such as melanin and hemoglobin can serve as endogenous PA contrast agent to monitor anatomical and physiological variations in diseases, only small fractions of such endogenous contrast agents have been reported. Therefore, in order to fully explore the potential of PAI, exogenous PA contrast agents based on near-infrared (NIR, 650~900 nm) absorption materials are urgently demanded. This article reviews the recent advances of organic optoelectronic materials in PAI such as small organic dye-based nanoparticles, polymer-based nanoparticles in biological imaging field. Then, we systematically summarize the structure properties relationship between contrast agents and the application of PAI to guide the design of new PA contrast agents. Finally, the future opportunities and challenges of PA contrast agents are discussed.

Contents
1 Introduction
2 Small dye nanoparticles
2.1 Perylene-based derivatives
2.2 Cyanine-based derivatives
2.3 BODIPY-based derivatives
2.4 Porphyrin-based derivatives
3 Conjugated polymer-based nanoparticles
4 Conclusions

CLC Number: 

[1] Xu M H, Wang L V. Review of Scientific Instruments, 2006, 7(4):041101.
[2] Wang X D, Xie X Y, Ku G N, Wang L V. Journal of Biomedical Optics, 2006, 11(2):024015.
[3] Li M L, Oh J T, Xie X Y, Ku G, Wang W, Li C, Lungu G, Stoica G, Wang L V. Proceedings of the IEEE, 2008, 96(3):481.
[4] Yang J M, Favazza C, Chen R M, Yao J J, Cai X, Maslov K, Zhou Q F, Shung K K, Wang L V. Nature Medicine, 2012, 18(8):1297.
[5] Wang T H, Yang Y, Alqasemi U, Kumavor P D, Wang X H, Sanders M, Brewer M, Zhu Q. Biomedical Optics Express, 2013, 4(12):2763.
[6] Dima A, Burton N C, Ntziachristos V. Journal of Biomedical Optics, 2014, 19(3):036021.
[7] Wang L V, Gao L. Annual Review of Biomedical Engineering, 2014, 16:155.
[8] Chen W B, Han Y Y, Peng X H. Chemistry-A Eropean Journal, 2014, 20(24):7410.
[9] Kim C, Favazza C, Wang L V. Chemical Reviews, 2010, 110(5):2756.
[10] Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G, Wang L V. Nature Biotechnology, 2003, 21(7):803.
[11] Taruttis A, Razansky D, Ntziachristos V. Claussen J, Journal of Biomedical Optics, 2012, 17(1):016009.
[12] Ntziachristos V. Nature Methods, 2010, 7(8):603.
[13] Ntziachristos V, Razansky D. Chemical Reviews, 2010, 110(5):2783.
[14] Wang L V, Hu S. Science, 2012, 335(6075):1458.
[15] Nie L M, Chen X Y. Chemical Society Reviews, 2014, 43(20):7132.
[16] Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B, Zhang E, Johonson P, Pizzey AR, Philip B, Marafioti T. Nature Photonics, 2015, 9(4):219.
[17] Zhang J C, Qiao Z Y, Yang P P, Pan J, Wang L, Wang H. Chinese Journal of Chemistry, 2015, 33(1):35.
[18] Pan J, Wan D, Bian Y X, Sun H F, Zhang C, Jin F M, Huang Z Q, Gong J L. AIChE Journal, 2013, 59(12):4494.
[19] Li K, Liu B. Chemical Society Reviews, 2014, 43(18):6570.
[20] Kim C, Song K H, Gao F, Wang L V. Radiology, 2010, 255(2):442.
[21] Akers W J, Kim C, Berezin M, Guo K, Fuhrhop R, Lanza G M, Fischer G M, Daltrozzo E, Zumbusch A, Cai X, Wang L V, Achilefu S. ACS Nano, 2011, 5(1):173.
[22] de la Zerda A, Bodapati S, Teed R, May S Y, Tabakman S M, Liu Z, Khuri-Yakub B. T, Chen X Y, Dai H J, Gambhir S S. ACS Nano, 2012, 6(6):4694.
[23] Lindner S M, Huttner S, Chiche A, Thelakkat M, Krausch G. Angewandte Chemie-International Edition, 2006, 45(20):3364.
[24] Ohta T, Nagano T, Ochi K, Kubozono Y, Shikoh E, Fujiwara A. Applied Physics Letters, 2006, 89(5):053508.
[25] Liu Y, Wang K R, Guo D S, Jiang B P. Advanced Functional Materials, 2009, 19(14):2230.
[26] Fan Q L, Cheng K, Yang Z, Zhang R P, Yang M, Hu X, Ma X W, Bu L H, Lu X M, Xiong X X, Huang W, Zhao H, Cheng Z. Advanced materials, 2015, 27(5):843.
[27] Chen Q, Liu X D, Chen J W, Zeng J W Cheng Z F, Liu Z. Advanced materials, 2015, 27(43):6820.
[28] Sheng Z H, Hu D H, Zheng M B, Zhao P F, Liu H L, Gao D Y, Gong P, Gao G H, Zhang P F, Ma Y F, Cai L T. ACS Nano, 2014, 8(12):12310.
[29] Zhang Y M, Jeon M, Rich L J, Hong H, Geng J M, Zhang Y, Shi S M, Barnhart T E, Alexandridis P, Huizinga J D, Seshadri M, Cai W B, Kim C, Lovell J F. Nature nanotechnology, 2014, 9(8):631.
[30] Huang G J, Si Z, Yang S H, Li C, Xing D. Journal of Materials Chemistry, 2012, 22(42):22575.
[31] Ni Y, Wu J S. Organic & Biomolecular Chemistry, 2014, 12(23):3774.
[32] Collado D, Vida Y, Najera F, Perez-Inestrosa E. RSC ADVANCES, 2014, 4:2306.
[33] Kamkaew A, Lim S H, Lee H B, Kiew L V, Chun L Y, Burgess K. Chemical Society Reviews, 2013,42(1):77.
[34] Frenette M, Hatamimoslehabadi M, Bellinger-Buckley S, Laoui S, La J, Bag S, Mallidi S, Hasan T, Bouma B, Yelleswarapu C, Rochford J. Journal of the American Chemical Society, 2014, 136(45):15853.
[35] Gresser R, Hummert M, Hartmann H, Leo K, Riede M. Chemistry-A European Journal, 2011, 17(10):2939.
[36] Jiao L J, Wu Y Y, Wang S F, Hu X K, Zhang P, Yu C J, Cong K B, Meng Q L, Hao E H, Vicente M G H, The Journal of Organic Chemistry, 2014, 79(4):1830.
[37] Majumdar P, Mack J, Nyokong T. RSC ADVANCES, 2015, 5(95):78253.
[38] Loudet A, Bandichhor R, Wu L X, Burgess K. Tetrahedron, 2008, 64(17):3642.
[39] Ma X, Mao X R, Zhang S W, Huang X B, Cheng Y X, Zhu C J. Polym. Chem., 2013, 4(3):520.
[40] Yang S K, Shi X H, Park S, Ha T, Zimmerman S C. Nature chemistry, 2013, 5(8):692.
[41] Yoshii R, Nagai A, Chujo Y. Journal of Polymer Science Part A:Polymer Chemistry, 2010, 48(23):5348.
[42] Yoshii R, Yamane H, Nagai A, Tanaka K, Taka H, Kita H, Chujo Y. Macromolecules, 2014, 47(7):2316.
[43] Li H, Zhang P, Smaga L P, Hoffman R A, Chan J. Journal of the American Chemical Society, 2015, 137(50):15628.
[44] Hu W B, Ma H H, Hou B, Zhao H, Ji Y, Jiang R C, Hu X M, Lu X M, Zhang L, Tang Y F, Fan Q L, Huang W. ACS Applied Materials & Interfaces, 2016, 8(19):12039.
[45] Huynh E, Leung B Y, Helfield B L, Shakiba M, Gandier J A, Jin C S, Master E R, Wilson B C, Goertz D E, Zheng G. Nature nanotechnology, 2015, 10(4):325.
[46] Huynh E, Lovell J F, Helfield B L, Jeon M, Kim C, Goertz D E, Wilson B C, Zheng G. Journal of the American Chemical Society, 2012, 134(40):16464.
[47] Lovell J F, Jin C S, Huynh E, Jin H, Kim C, Rubinstein J L, Chan W C W, Cao W G, Wang L V, Zheng G. Nature materials, 2011, 10(4):324.
[48] Ng K K, Takada M, Harmatys K, Chen J, Zheng, G. ACS Nano 2016, 10(4):4092.
[49] Zhang D, Qi G B, Zhao Y X, Qiao S L, Yang C, Wang H. Advanced Materials, 2015, 27(40):6125.
[50] Li L L, Ma H L, Qi G B, Zhang D, Yu F Q, Hu Z Y, Wang H. Advanced Materials, 2016, 28(2):254.
[51] Zha Z B, Deng Z J, Li Y Y, Li C H, Wang J R, Wang S M, Qu E Z, Dai Z F. Nanoscale, 2013, 5(10):4462.
[52] Liu J, Geng J L, Liao L D, Thakor N, Gao X H, Liu B. Polymer Chemistry, 2014, 5(8):2854.
[53] Hong J Y, Yoon H, Jang J. Small, 2010, 6(5):679.
[54] Jang J, Yoon H. Small, 2005, 1(12):1195.
[55] Oh W K, Yoon H, Jang J. Biomaterials, 2010, 31(6):1342.
[56] Pu K Y, Shuhendler A J, Jokerst J V, Mei J G, Gambhir S S, Bao Z N, Rao J H. Nature nanotechnology, 2014, 9(3):233.
[57] Yang J, Choi J, Bang D, Kim E, Lim E K, Park H, Suh J S, Lee K, Yoo K H, Kim E K. Angewandte Chemie-International Edition, 2011,50(2):441.
[58] Chong H, Nie C Y, Zhu C L, Yang Q, Lv F T, Wang S. Langmuir, 2012, 28(4):2091.
[59] Yang K, Xu H, Cheng L, Sun C Y, Wang J, Liu Z. Advanced Mareials, 2013, 25(7):945.
[60] Zha Z B, Yue X L, Ren Q S, Dai Z F. Advanced materials, 2013,25(5):2013.
[61] Liang X L, Li Y Y, Li X D, Jing L J, Deng Z J, Yue X L, Li C H, Dai Z F, Advanced Functional Materials, 2015, 25(9):1451.
[62] Huang S, UPPuturi P K, Liu H, Pramanik M, Wang M F. Journal of Materials Chemistry B, 2016, 4(9):1696.
[63] Lyu Y, Fang Y, Miao Q Q, Zhen X, Ding D, Pu K Y. ACS Nano, 2016, 10(4):4472.
[64] Fan Q L, Cheng K, Hu X, Ma X W, Zhang R P, Yang M, Lu X. M, Xing L, Huang W, Gambhir S S, Cheng Z. Journal of the American Chemical Society, 2014, 136(43):15185.
[65] Yang M, Fan Q L, Zhang R P, Cheng K, Yan J J, Pan D H, Ma X W, Lu A, Cheng Z. Biomaterials, 2015, 69:30.
[66] Zhang R P, Fan Q L, Yang M, Cheng K, Lu X M, Zhang L, Huang W, Cheng Z. Advanced Materials, 2015, 27(34):5063.
[67] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne A J C. Chemical Communications, 2015, 51(28):6084.
[1] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[2] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[3] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[4] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[5] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[6] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[7] Guang Deng, Hong Yang, Zhiguo Zhou*, Shiping Yang*. Design and Application of T1-T2 Dual-Modal MRI Contrast Agents [J]. Progress in Chemistry, 2018, 30(10): 1534-1547.
[8] Jun Hu, Yuzhu Yao, Yanxiao Ao, Hai Yang, Xiangliang Yang*, Huibi Xu. Inorganic Nanomaterials for Tumor Comprehensive Therapy [J]. Progress in Chemistry, 2018, 30(10): 1584-1591.
[9] Rui Chen*, Jingjing Wang, Hongzhi Qiao. Organic Photothermal Conversion Materials and Their Application in Photothermal Therapy [J]. Progress in Chemistry, 2017, 29(2/3): 329-336.
[10] Liu Yingya, Fan Xiao, Li Yanyan, Qu Lulu, Qin Haiyue, Cao Yingnan, Li Haitao. Multispectral Photoacoustic Tomography and Its Development in Biomedical Application [J]. Progress in Chemistry, 2015, 27(10): 1459-1469.
[11] Shen Aijun, Dong Haiqing, Wen Huiyun, Xu Meng, Li Yongyong, Wang Peijun. Gadolinium-Based Contrast Agents for Tumor Targeting Imaging [J]. Progress in Chemistry, 2011, 23(4): 772-780.
[12] Wang Lingyun Chen Qiuyun Wei Bin. MRI Contrast Agent for the Diagnosis of Tumor [J]. Progress in Chemistry, 2010, 22(01): 186-193.
[13] Sui Xiaofeng Yuan Jinying** Yuan Weizhong Zhou Mi . Surface-Initiated Living Radical Polymerization from Inorganic Nanomaterials [J]. Progress in Chemistry, 2008, 20(0708): 1122-1127.
[14]

Zhang Shanrong, Ren Jimin, Pei Fengkui

. The Research Progress of Magnetic Resonance Imaging Contrast Agents [J]. Progress in Chemistry, 1995, 7(02): 98-.