中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 216-230 DOI: 10.7536/PC160717 Previous Articles   Next Articles

• Review •

The Synthesis and Biological Applications of Water-Soluble Perylene Diimides

Jinjun Wu1, Zhen Yang1, Jianmei Jiao2, Pengfei Sun1*, Quli Fan1, Wei Huang1,2*   

  1. 1. Key Lab for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
    2. Key Lab of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61378081, 21574064, 51503103), the Jiangsu Provincial Natural Science Foundation for Youth (No. BK20150843), and NUPTSF (No. NY215017, NY211003).
PDF ( 926 ) Cited
Export

EndNote

Ris

BibTeX

Perylene diimide and its derivatives (PDIs) have been widely used as organic field-effect transistor (OFET), organic photovoltaic cell (OPV), dye laser and organic light emitting diode (OLED) in the field of optoelectronic materials due to their photo, thermal, chemical stability and high fluorescence quantum yields. However, because of their inherent structure, PDIs have poor water-solubility and easily form aggregates, which has limited their applications in biological fields. So, it's essential to synthesize water-soluble PDIs. This paper systematically presents the synthetic methods for obtaining water-soluble PDIs by introducing anionic substituent, cationic substituent or non-ionic substituent into the imide-position or bay-region of PDIs. Some of these substituents are water-soluble, and the others will achieve the water-solubility of PDIs through electrostatic repulsion or steric hindrance. In addition, several novel biological applications have been listed, such as chemotherapy,photodynamic therapy and fluorescence imaging.PDIs can also be used as a promising photo-acoustic contrast agents due to their good light absorption and photostability.

Contents
1 Introduction
2 Modification of PDIs
3 Modification of water-soluble PDIs
3.1 Anionic substituent
3.2 Cationic substituent
3.3 Non-ionic substituent
4 Biological application of water-soluble PDIs
4.1 Fluorescence probe
4.2 Contrast agent of photo-acoustic imaging
4.3 Chemotherapy
4.4 Photo-sensitizer of photodynamic therapy
5 Conclusion

CLC Number: 

[1] Huang C, Barlow S, Marder S R. J. Org. Chem., 2011, 76:2386.
[2] Kazmaier P M, Hoffmannr R. J. Am. Chem. Soc., 1994, 116:9684.
[3] Wurthner F. Chem. Commun., 2004, (14):1564.
[4] Ahrens M J, Fuller M J, Wasielewski M R. Chem. Mater., 2003, 15:2684.
[5] Serin J M, Brousmiche D W, Frechet J M J. Chem. Commun., 2002, (22):2605.
[6] Gronheid R, Hofkens J, Köhn F, Weil T, Reuther E, Müllen K, Schryver F C D. J. Am. Chem. Soc., 2002, 124:2418.
[7] An Z, Yu J, Jones S C, Barlow S, Yoo S, Domercq B, Prins P, Siebbeles L D A, Kippelen B, Marder S R. Adv. Mater., 2005, 17:2580.
[8] Jones B A, Facchetti A, Wasielewski M R, Marks T J. J. Am. Chem. Soc., 2007, 129:15259.
[9] Sadrai M, Bird G R. Opt. Commun., 1984, 51:62.
[10] Ford W E, Kamat P V. J. Phys. Chem., 1987, 91:6373.
[11] Seybold G, Wagenblast G. Dyes Pigments, 1989, 11:303.
[12] Zhan X W, Tan Z, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S R. J. Am. Chem. Soc., 2007, 129:7246.
[13] Lindner S M, Kaufmann N, Thelakkat M. Org. Electr., 2007, 8:69.
[14] Jones B A, Ahrens M J, Yoon M H, Facchetti A, Marks T J, Wasielewski M R. Angew. Chem. Int. Ed., 2004, 43:6363.
[15] Zhan X W, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Marder S R. Adv. Mater., 2011, 23:268.
[16] Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend R H, MacKenzie J D. Science, 2001, 293:1119.
[17] Tan Z A, Zhou E, Zhan X, Wang X, Li Y, Barlow S, Marder S R. Appl. Phys. Lett., 2008, 93:073309.
[18] Qu J Q, Zhang J Y, Grimsdale A C, Mullen K, Jaiser F, Yang X H, Neher D. Macromolecules, 2004, 37:8297.
[19] Langhals H, Jona W, Einsiedl F, Wohnlich S. Adv. Mater., 1998, 10:1022.
[20] Gorl D, Zhang X, Wurthner F. Angew. Chem. Int. Ed., 2012, 51:6328.
[21] Wang B, Yu C. Angew. Chem., 2010, 122:1527.
[22] Wang B, Zhu Q K, Liao D L, Yu C. J. Mater. Chem., 2011, 21:4821.
[23] Wang B, Jiao H P, Li W Y, Liao D L, Wang F Y, Yu C. Chem. Commun., 2011, 47:10269.
[24] Fan Q L, Cheng K, Yang Z, Zhang R P, Yang M, Hu X, Ma X M, Bu L H, Lu X M, Xiong X X, Huang W, Zhao H, Cheng Z. Adv. Mater., 2015, 27:843.
[25] Zhao Q, Zhang H Y. Dyes Pigments, 2005, 66:15.
[26] Icli S, Demic S, Dindar B, Doroshenko A O, Timur C. J. Photochem. Photobiol. A, 2000, 136:15.
[27] Langhals H. Heterocycles, 1995, 40:477.
[28] Syebold G, Wagenblast G. Dyes Pigments, 1989, 11:303.
[29] Langhals H, Demmig S, Huber H. Spectrochim. Acta Part A, 1988, 44:1189.
[30] Fan L Q, Xu Y P, Tian H. Tetrahedron Lett., 2005, 46:4443.
[31] Chen Z J, Baumeister U, Tschierske C, Wurthner F. Chem. Eur. J., 2007, 13:450.
[32] Sadrai M, Hadel L, Saners R R. J. Phys. Chem., 1992, 96:7988.
[33] Wang K, Wang Y, Li J, An H, Zhang L, Zhang J, Li X. Bioorg. Med. Chem. Lett., 2013, 23:480.
[34] Qu J, Kohl C, Pottek M, Müllen K. Angew. Chem. Int. Ed., 2004, 43:1528.
[35] Frank D, Vos M, Antonietti M, Sommerdijk N A J M, Faul C F J. Chem. Mater., 2006, 18:1839.
[36] Kohl C, Weil T, Qu J, Müllen K. Chem. Eur. J., 2004, 10:5297.
[37] Ehli C, Oelsner C, Guldi D M, Mateo-Alonso A, Prato M, Schmidt C, Backes C, Hauke F, Hirsch A. Nat. Mater., 2014, 1:243.
[38] Backes C, Schmidt C D, Hauke F, Bottcher C, Hirsch A. J. Am. Chem. Soc., 2009, 131:2172.
[39] Zheng Y, You S S, Ji C D, Yin M Z, Yang W T, Shen J. Adv. Mater., 2016, 28:1375.
[40] Battagliarin G, Davies M, Mackowiak S, Li C, Müllen K. Chem. Phys., 2012, 13:923.
[41] Wang B, Yu C. Angew. Chem. Int. Ed., 2010, 49:1485.
[42] Xu Z, Cheng W, Guo K, Yu J, Shen J, Tang J, Yang W T, Yin M. ACS Appl. Mater. Inter., 2015, 7:9784.
[43] You S S, Cai Q, Zheng Y, He B C, Shen J, Yang W T, Yin M Z. ACS Appl. Mater. Inter., 2014, 6:16327.
[44] Yin M Z, Shen J, Gert O P, Mullen K. J. Am. Chem. Soc., 2008, 130:7806.
[45] You S, Cai Q, Müllen K, Yang W, Yin M. Chem. Commun., 2014, 50:823.
[46] Yin M T, Feng C L, Shen J, Yu Y M, Xu Z J, Yang W T, Knoll W, Müllen K. Small, 2011, 7:1629.
[47] Xu Z J, He B C, Shen J, Yang W T, Yin M Z. Chem. Commun., 2014, 50:823.
[48] Du F F, Tian J, Wang H, Liu B, Jin B K, Bai R. Macromolecules, 2012, 45:3086.
[49] Forgan R S, Sauvage J P, Stoddart J F. Chem. Rev., 2011, 111:5434.
[50] Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biomaterials, 2009, 30:6358.
[51] Biedermann F, Elmalem E, Ghosh I, Nau W M, Scherman O A. Angew. Chem., 2012, 124:7859.
[52] Liu K, YaoY X, Kang Y T, Liu Y, Han Y C, Wang Y L, Li Z B, Zhang X. Sci. Rep., 2013, 3:2372.
[53] Casado A G, Jonkheijm P, Huskens J. Langmuir, 2011, 27:11508.
[54] Biedermann F, Elmalem E, Ghosh I, Nau W M, Scherman O A. Angew. Chem. Int. Ed., 2012, 51:7739.
[55] Yang S K, Shi X H, Park S, Doganay S, Ha T, Zimmerman S C. J. Am. Chem. Soc., 2011, 133:9964.
[56] Rauwald U, Biedermann F, Deroo S, Robinson C V, Scherman O A. J. Phys. Chem. B, 2010, 114:8606.
[57] Zhang X, Rehm S, Safont-Sempere M M, Wurthner F. Nat. Mater., 2009, 1:263.
[58] Wang L, Xu L Q, Neoh K G, Kang E T. J. Mater. Chem., 2011, 21:6502.
[59] Xu L Q, Wang L, Zhang B, Lim C H, Chen Y, Neoh K G, Kang E T, Fu G D. Polymer, 2011, 52:2376.
[60] Ustinov A V, Dubnyakova V V, Korshun V A. Tetrahedron, 2008, 64:1467.
[61] Heek T, Nikolaus J, Schwarzer R, Fasting C, Welker P, Licha K, Herrmann K, Haag R. Bioconjugate Chem., 2013, 24:153.
[62] Li Z, Wei L, Gao M, Lei H. Adv. Mater., 2005, 17:1001.
[63] Gref R, Domb A, Quellec P, Blunk T, Muller R H, Verbavatz J M, Langer R. Adv. Drug. Delivery. Rev., 2012, 64:316.
[64] Shirman E, Ustinov A, Ben-Shitrit N, Weissman H, Iron M A, Cohen R, Rybtchinski B. J. Phys. Chem. B, 2008, 112:8855.
[65] Gao B X, Li H X, Liu H M, Zhang L C, Bai Q Q, Ba X W. Chem. Commun., 2011, 47:3894.
[66] Heek T, Fasting C, Rest C, Zhang X, Wurthner F, Haag R. Chem. Commun., 2010, 46:1884.
[67] Heek T, Wurthner F, Haag R. Chem. Eur. J., 2013, 19:10911.
[68] Chen M J, Yin M Z. Progress in Polymer Science, 2014, 39:365.
[69] Liu K L, Xu Z J, Yin M Z. Progress in Polymer Science, 2015, 46:25.
[70] Sun M M, Mullen K, Yin M Z. Chem. Soc. Rev., 2016, 45:1513.
[71] Jeong Y, Yoon J. Inorg. Chim. Acta., 2012, 381:2.
[72] Langner C, Denk H. Virchows Archiv, 2004, 445:111.
[73] Zhong L N, Xing F F, Bai Y L, Zhao Y M, Zhu S R. Spectrochim. Acta Part A, 2013, 115:370.
[74] Willner I, Zayats M. Angew. Chem., 2007, 119:6528.
[75] Zhao W A, Ali M M, Aguirre S D, Brook M A, Li Y F. Anal. Chem., 2008, 80:8431.
[76] Yang Z, Yuan Y, Jiang R C, Fu N N, Lu X M, Tian C C, Hu W B, Fan Q L, Huang W. Polym. Chem., 2014, 5:1372.
[77] Ma Y S, Zhang F X, Zhang J F, Jiang T Y, Li X M, Wu J S, Ren H X. Luminscence, 2016, 31:102.
[78] Wang L, Sun C, Li S F, Jia N, Li J, Qu F R, Goh K L, Chen Y. Polymer, 2016, 82:172.
[79] Kaloyanova S, Zagranyarski Y, Ritz S, Hanulova M, Koynov K, Vonderheit A, Mullen K, Peneva K. J. Am. Chem. Soc., 2016, 138:2881.
[80] Wang X, Pang Y, Ku G, Stoica G, Wang L V. Opt. Lett., 2003, 28:1739.
[81] Xiang L, Xing D, Gu H, Yang D, Yang S, Zeng L, Chen W R. J. Biomed. Opt., 2007, 12:14001.
[82] Taruttis A, van Dam G M, Ntziachristos V. Cancer Res., 2015, 75:1548.
[83] Zackrisson S, van de Ven S M W Y, Gambhir S S. Cancer Res., 2014, 74:979.
[84] Yuan Z, Jiang H. Med. Phys., 2007, 34:538.
[85] Xu M, Wang L V. IEEE Trans. Med. Imaging, 2002, 21:814.
[86] Xu M, Xu Y, Wang L V. IEEE Trans. Biomed. Eng., 2003, 50:1086.
[87] Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. ACS Nano, 2012, 6:641.
[88] Yu J, Yang C, Li J D S, Ding Y C, Zhang L, Yousaf M Z, Li J, Pang R, Wei L B, Xu L L, Sheng F G, Li C H, Li G J, Zhao L Y, Hou Y L. Adv. Mater., 2014, 26:4114.
[89] De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith B R, Ma T J, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub B T, Gambhir S S. Nat. Nanotechnol., 2008, 3:557.
[90] Xu Z J, Guo K R, Yu J S, Sun H L, Tang J, Shen J, Mullen K, Yang W T, Yin M Z. Small, 2014, 10:4087.
[91] Sun M M, Yin W Y, Dong X H, Yang W T, Zhao Y L, Yin M Z. Nanoscale, 2016, 8:5302.
[92] Ikeda N, Usuda J, Kato H, Ishizumi T, Ichinose S, Otani K, Honda H, Furukawa K, Okunaka T, Tsutsui H. Laser. Surg. Med., 2011, 43:749.
[93] Capella M A M, Capella L S J. Biomed. Sci., 2003, 10:361.
[94] Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40:340.
[95] Lucky S S, Soo K C, Zhang Y. Chem. Rev., 2015, 115:1990.
[96] Debele T A, Peng S, Tsai H C. Mol. Sci., 2015, 16:22094.
[97] Yukruk F, Dogan A L, Canpinar H, Guc D, Akkaya E U. Org. Lett., 2005, 7:2885.
[98] Dincalp H, K?z?lok S, Icli S. J. Fluoresc., 2014, 24:917.
[99] Cao G J, Rong R X, Wang Y N, Xu Q, Wang K R, Li X L. Dyes Pigments, 2017, 136:569.
[1] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[2] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[3] Qian Cheng, Jiaming Yu, Xinzhu Huo, Yumeng Shen, Shouxin Liu. Enhancement Luminescence and Applications of Rare Earth Fluoride [J]. Progress in Chemistry, 2019, 31(12): 1681-1695.
[4] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[5] Wu Yuxuan, Liu Ning, Ding Songdong. Water-Soluble Ligands Used in the Separation of Actinides and the Partitioning of Trivalent Lanthanides from Actinides [J]. Progress in Chemistry, 2014, 26(10): 1655-1664.
[6] Sun Mengmeng, He Yong, Yang Wantai, Yin Meizhen. Synthesis and Bio-Application of Poly(Ethylene Phosphate) [J]. Progress in Chemistry, 2013, 25(12): 2093-2102.
[7] Chen Mengjun, Yang Wantai, Yin Meizhen* . Synthesis and Applications of Nanoparticles in Biology [J]. Progress in Chemistry, 2012, 24(12): 2403-2414.
[8] He Naipu, Wang Rongmin. Self-Assembly of Protein with Polymer [J]. Progress in Chemistry, 2012, 24(01): 94-100.
[9] Miao Likun, Liu Xingfen, Fan Quli, Huang Wei. Detection of Metal Ions Based on Conjugated Fluorescent Polymers* [J]. Progress in Chemistry, 2010, 22(12): 2338-2352.
[10] . Preparation of Nanoparticles with Multi-Functional Water-Soluble Polymer Ligands [J]. Progress in Chemistry, 2010, 22(05): 953-961.
[11] Huang Yanqin|Fan Quli|Huang Wei**. Water-Soluble Conjugated Polyelectrolytes [J]. Progress in Chemistry, 2008, 20(04): 574-585.
[12] Chen Hui, Ma Huiru, Guan Jianguo**. Preparation of Water-Soluble Conducting Polyanilines [J]. Progress in Chemistry, 2007, 19(11): 1770-1775.
[13] Heping Yao,Yujing Dai,Jiachun Feng,Bo Peng,Wei Wei**|Wei Huang**. Organic Molecules Grafted Silicon Surface Through Wet Chemistry Method [J]. Progress in Chemistry, 2006, 18(09): 1143-1149.
[14] Zhongqing Liu, Changchun Ge*. Photocatalysis of Nonmetal Modified TiO2 Induced by Visible Light [J]. Progress in Chemistry, 2006, 18(0203): 168-175.
[15] Wang Qian,Xu Xu**. Synthetic Polymers for DNA Separation by Capillary Electrophoresis [J]. Progress in Chemistry, 2003, 15(04): 275-.