中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 329-336 DOI: 10.7536/PC160638 Previous Articles   

• Review •

Organic Photothermal Conversion Materials and Their Application in Photothermal Therapy

Rui Chen*, Jingjing Wang, Hongzhi Qiao   

  1. College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Young Natural Science Foundation of China(No.81601598), the Jiangsu Province Young Natural Science Foundation (No.BK20151001), and the Young Natural Science Foundation of Nanjing University of Chinese Medicine(No.13XZR22).
PDF ( 1402 ) Cited
Export

EndNote

Ris

BibTeX

Photothermal therapy (PTT), as a new type of tumor treatment technology, has received intensive attention recently due to its high efficiency for tumor inhibition and low damage to normal tissue. Over the past decade, many photothermal conversion agents have been widely used in the research of PTT, especially inorganic nanomaterials with surface plasmon resonance properties, such as gold based nanoparticles. With the development of nanotechnology and nanomaterials, the types and properties of photothermal agents have been increasingly improved. Spired by the excellent cancer therapy effect of photothermal therapy, people pay more attention to the possibility of its clinical application. In recent years, organic photothermal agents have been developed rapidly, due to their abilities to overcome the non-biodegradable characteristics of inorganic materials. This article summarizes the recently developed research of several typical photothermal nanomaterials, including small molecular dyes, supramolecular complexes and conjugated polymers. Based on these organic agents, various biocompatible materials are developed for clinical photothermal therapy. And the application of the imaging guided photothermal therapy and combined therapy is briefly described. In the end, the primary categories and development direction of organic photothermal agents are summarized. And the problems and challenges of clinical photothermal therapy are pointed out.

Contents
1 Introduction
2 Small molecular dyes
2.1 Indocyanine green
2.2 Prussian blue
2.3 Thiadiazole derivatives
3 Supramolecular complexes
3.1 Porphysomes
3.2 BPDI/(CB[7])2
4 Conjugated polymers
4.1 Polyaniline
4.2 Polypyrrole
4.3 PEDOT:PSS
4.4 Polydopamine
5 Other applications of photothermal therapy
5.1 Imaging-guided photothermal therapy
5.2 Combined cancer therapy
6 Conclusion and outlook

CLC Number: 

[1] Mcguire S. Adv. Nutr., 2016, 7:418.
[2] Issels R D. Eur. J. Cancer, 2008, 44:2546.
[3] Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F, El-Sayed M A. Cancer Lett., 2008, 269:57.
[4] Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W J. Langmuir, 2008, 24:11860.
[5] Manikandan M, Hasan N, Wu H F. Biomaterials, 2013, 34:5833.
[6] Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. ACS Nano, 2011, 5:9761.
[7] Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat. Nanotechnol., 2011, 6:28.
[8] Dong J, Ma Q. Nanotoxicology, 2016, 10:699.
[9] Song X, Chen Q, Liu Z. Nano Res., 2015, 8:340.
[10] Yu J, Javier D, Yaseen M A, Nitin N, Richards K R, Anvari B, Wong M S. J. Am. Chem. Soc., 2010, 132:1929.
[11] Saxena V, Sadoqi M, Shao J. J. Pharm. Sci., 2003, 92:2090.
[12] Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll Y J. Invest. Ophth. Vis. Sci., 1998, 39:1286.
[13] Dzurinko V L, Gurwood A S, Price J R. Optometry, 2004, 75:743.
[14] Quan B, Choi K, Kim Y H, Kang K W, Chung D S. Talanta, 2012, 99:387.
[15] Alt?no?lu E I, Russin T J, Kaiser J M, Barth B M, Eklund P C, Kester M, Adair J H. ACS Nano, 2008, 2:2075.
[16] Bahmani B, Gupta S, Upadhyayula S, Vullev V I, Anvari B. J. Biomed. Opt., 2011, 16:051303.
[17] Bunschoten A, Buckle T, Kuil J, Luker G D, Luker K E, Nieweg O E, van Leeuwen F W. Biomaterials, 2012, 33:867.
[18] Liu P, Yue C, Shi B, Gao G, Li M, Wang B, Ma Y, Cai L. Chem. Commun., 2013, 49:6143.
[19] Chen R, Wang X, Yao X, Zheng X, Wang J, Jiang X. Biomaterials, 2013, 34:8314.
[20] Sheng Z, Hu D, Xue M, He M, Gong P, Cai L. Nano-Micro Lett., 2013, 5:145.
[21] Zheng X, Xing D, Zhou F, Wu B, Chen W R. Mol. Pharmaceutics, 2011, 8:447.
[22] Li C, Liang R, Tian R, Guan S, Yan D, Luo J, Wei M, Evans D G, Duan X. RSC Adv., 2016, 6:16608.
[23] Zheng X, Zhou F, Wu B, Chen W R, Xing D. Mol. Pharmaceutics, 2012, 9:514.
[24] Yue C, Liu P, Zheng M, Zhao P, Wang Y, Ma Y, Cai L. Biomaterials, 2013, 34:6853.
[25] Luo S, Tan X, Qi Q, Guo Q, Ran X, Zhang L, Zhang E, Liang Y, Weng L, Zheng H, Cheng T, Su Y, Shi C. Biomaterials, 2013, 34:2244.
[26] Cheng L, He W, Gong H, Wang C, Chen Q, Cheng Z, Liu Z. Adv. Funct. Mater., 2013, 23:5893.
[27] Chen Q, Liu X, Zeng J, Cheng Z, Liu Z. Biomaterials, 2016, 98:23.
[28] Fu G, Liu W, Feng S, Yue X. Chem. Commun., 2012, 48:11567.
[29] Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z. Biomaterials, 2014, 35:9844.
[30] Hoffman H A, Chakrabarti L, Dumont M F, Sandler A D, Fernandes R. RSC Adv., 2014, 4:29729.
[31] Fu G, Liu W, Li Y, Jin Y, Jiang L, Liang X, Feng S, Dai Z. Bioconjugate Chem., 2014, 25:1655.
[32] Cai X, Jia X, Gao W, Zhang K, Ma M, Wang S, Zheng Y, Shi J, Chen H. Adv. Funct. Mater., 2015, 25:2520.
[33] Huang S, Kannadorai R K, Chen Y, Liu Q, Wang M. Chem. Commun., 2015, 51:4223.
[34] Sun T, Qi J, Zheng M, Xie Z, Wang Z, Jing X. Colloids Surf., B, 2015, 136:201.
[35] Lovell J F, Jin C S, Huynh E, Jin H, Kim C, Rubinstein J L, Chan W C, Cao W, Wang L V, Zheng G. Nat. Mater., 2011, 10:324.
[36] Jin C S, Lovell J F, Chen J, Zheng G. ACS Nano, 2013, 7:2541.
[37] Jiao Y, Liu K, Wang G, Wang Y, Zhang X. Chem. Sci., 2015, 6:3975.
[38] Yang J, Choi J, Bang D, Kim E, Lim E K, Park H, Suh J S, Lee K, Yoo K H, Kim E K. Angew. Chem. Int. Edit., 2011, 123:461.
[39] Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, Li F. Biomaterials, 2013, 34:9584.
[40] Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. Adv. Mater., 2012, 24:5586.
[41] Zha Z, Yue X, Ren Q, Dai Z. Adv. Mater., 2013, 25:777.
[42] Zha Z, Wang J, Qu E, Zhang S, Jin Y, Wang S, Dai Z. SCI Rep., 2013, 3:2360.
[43] Cheng L, Yang K, Chen Q, Liu Z. ACS Nano, 2012, 6:5605.
[44] Gong H, Cheng L, Xiang J, Xu H, Feng L, Shi X, Liu Z. Adv. Funct. Mater., 2013, 23:6059.
[45] MacNeill C M, Coffin R C, Carroll D L, Levi-Polyachenko N H. Macromol. Biosci., 2013, 13:28.
[46] MacNeill C M, Graham E G, Levi-Polyachenko N H. J. Polym. Sci. Pol. Chem., 2014, 52:1622.
[47] Liu J, Geng J, Liao L D, Thakor N, Gao X, Liu B. Polym. Chem., 2014, 5:2854.
[48] Geng J, Sun C, Liu J, Liao L D, Yuan Y, Thakor N, Wang J, Liu B. Small, 2015, 11:1603.
[49] Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv. Mater., 2013, 25:1353.
[50] Ding F, Li H J, Wang J X, Tao W, Zhu Y H, Yu Y, Yang X Z. ACS Appl. Mater. Inter., 2015, 7:18856.
[51] Ma Y, Tong S, Bao G, Gao C, Dai Z. Biomaterials, 2013, 34:7706.
[52] Tian Q, Wang Q, Yao K X, Teng B, Zhang J, Yang S, Han Y. Small, 2014, 10:1063.
[53] Wu M, Zhang D, Zeng Y, Wu L, Liu X, Liu J. Nanotechnology, 2015, 26:115102.
[54] Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z. Biomaterials, 2014, 35:5814.
[55] Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. J. Pharma. Sci., 2013, 102:6.
[56] Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G, Cheng L, Li Y, Liu Z. ACS Nano, 2013, 7:6782.
[57] Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. ACS Nano, 2013, 7:2056.
[58] Song X, Zhang R, Liang C, Chen Q, Gong H, Liu Z. Biomaterials, 2015, 57:84.
[59] Dong Z, Gong H, Gao M, Zhu W, Sun X, Feng L, Fu T, Li Y, Liu Z. Theranostics, 2016, 6:1031.
[60] Cheng L, Wang C, Feng L, Yang K, Liu Z. Chem. Rev., 2014, 114:10869.
[1] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[2] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[3] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[4] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[5] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[6] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[7] Jun Hu, Yuzhu Yao, Yanxiao Ao, Hai Yang, Xiangliang Yang*, Huibi Xu. Inorganic Nanomaterials for Tumor Comprehensive Therapy [J]. Progress in Chemistry, 2018, 30(10): 1584-1591.
[8] Xiaomei Lu, Pengfei Chen, Wenbo Hu, Yufu Tang, Wei Huang, Quli Fan. Organic Optoelectronic Materials for Photoacoustic Imaging [J]. Progress in Chemistry, 2017, 29(1): 119-126.
[9] Liu Tao, Sun Lining, Liu Zheng, Qiu Yannan, Shi Liyi. Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2012, 24(0203): 304-317.
[10]

Ma Zhanfang**|Tian Le|Di Jing|Ding Teng

. Bio-Detection, Cellular Imaging and Cancer Photothermal Therapy Based on Gold Nanorods [J]. Progress in Chemistry, 2009, 21(01): 134-142.
[11] Sui Xiaofeng Yuan Jinying** Yuan Weizhong Zhou Mi . Surface-Initiated Living Radical Polymerization from Inorganic Nanomaterials [J]. Progress in Chemistry, 2008, 20(0708): 1122-1127.