中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1560-1568 DOI: 10.7536/PC160632 Previous Articles   Next Articles

Bismuth and Bismuth Composite Photocatalysts

Zhang Xiaojing1,2, Liu Yang2, Zhang Qian2, Zhou Ying1,2*   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Shool of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51102245, 21403172), the Sichuan Science and Technology Foundation for Distinguished Young Scholars (No. 2014JQ0017) and the Innovative Research Team of Sichuan Province (No. 2016TD0011)
PDF ( 2704 ) Cited
Export

EndNote

Ris

BibTeX

As a new type of photocatalyst, elemental bismuth has attracted wide attentions for energy conversion and environmental remediation. In this review, the photocatalytic mechanism of elemental Bi including photosensitization, photocatalysis and plasma resonance is discussed. In addition, the main preparation methods such as precipitation, solvothermal and electrochemical methods are described as well. Moreover, the influences of surface active agents, reaction temperature and pH values on the synthesis of bismuth particles are discussed in details. Generally, the optical properties of bismuth are strongly affected by its size and morphology, which is one of the key factors for photocatalytic applications. Besides, bismuth-semiconductor composites including Bi-titanium dioxide, Bi-bismuth oxides, Bi-zinc oxides and Bi-C3N4 are also reported as a kind of promising non-noble metal photocatalysts due to their enhanced oxygen vacancy density and increased photo-generated carriers mobility caused by the formation of heterojunction, which could be prepared by one-step hydrothermal process or reduction methods through polybasic alcohol or light irradiation. Furthermore, the narrowed band gap of the compound and the plasma resonance effect of bismuth are also demonstrated to be the reasons for the enhanced photocatalytic activities. Finally, on the basis of the above work, the development of Bi-semiconductor composite photocatalysts is discussed and the opinions on future trend are presented as well.

Contents
1 Introduction
2 Bismuth photocatalyst
2.1 The photocatalytic mechanism of bismuth
2.2 The relationship among the size, morphology, absorption of bismuth
2.3 The preparation methods of bismuth
3 Bismuth composite photocatalysts
3.1 Bi-TiO2
3.2 Bi-bismuth oxides
3.3 Bi-other semiconductors
4 Conclusion

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] Somorjai G A, Frei H, Park J Y. J. Am. Chem. Soc., 2009, 131:16589.
[3] Bauer A, Westkamper F, Grimme S, Bach T. Nature, 2005, 436:1139.
[4] Maldotti A, Molinari A, Amadelli R. Chem. Rev., 2002, 102:3811.
[5] Frank S N, Bard A J. J. Am. Chem. Soc., 1977, 99:303.
[6] Frank S N, Bard A J. J. Phys. Chem., 1977, 81:1484.
[7] Asahi R, Morikawa T, Ohwaki T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293:269.
[8] Yu H G, Irie H, Hashimoto K. J. Am. Chem. Soc., 2010, 132:6898.
[9] Cong Y, Zhang J L, Chen F, Anpo M, He D. J. Phys. Chem. C, 2007, 111:10618.
[10] Liu G, Jimmy C Y, Lu G Q M, Cheng H M. Chem. Commun., 2011, 47:6763.
[11] 于洪涛(Yu H T),全燮(Quan X). 化学进展(Progress in Chemistry), 2009, 21:406.
[12] Chen X, Liu L, Peter Y Y, Mao S S. Science, 2011, 331:746.
[13] 李二军(Li E J),陈浪(Chen L),章强(Zhang Q),李文华(Li W H), 尹双凤(Yin S F). 化学进展(Progress in Chemistry),2010, 22:2282.
[14] Zhao Z Y, Zhou Y, Wang F, Zhang K, Yu S, Cao K. ACS Appl. Mater. Interfaces, 2015, 7:730.
[15] Zhou Y, Zhao Z Y, Wang F, Cao K, Doronkin D E. J. Hazard. Mater., 2016, 307:163.
[16] Liu G, Yin L C, Niu P, Jiao W, Cheng H M. Angew. Chem. Int. Ed., 2013, 52:6242.
[17] Liu G, Niu P, Yin L C, Cheng H M. J. Am. Chem. Soc., 2012, 134:9070.
[18] Wang F, Ng W K H, Yu J C, Zhu H J, Li C H, Zhang L, Liu Z F, Li Q. Appl. Catal. B, 2012, 111/112:409.
[19] Xu X X, Randorn C, Efstathiou P, Irvine J T S. Nature Mater., 2012, 11:595.
[20] Zhang Q, Zhou Y, Wang F, Dong F, Li W, Li H, Patzke G R. J. Mater. Chem. A, 2014, 2:11065.
[21] Dong F, Xiong T, Sun Y, Zhao Z, Zhou Y, Feng X, Wu Z. Chem. Commun., 2014, 50:10386.
[22] Qin F, Li G, Xiao H, Lu Z, Sun H, Chen R. Dalton Trans., 2012, 41:11263.
[23] Qin F, Wang R M, Li G F, Tian F, Zhao H P, Chen R. Catal. Commun., 2013, 42:14.
[24] Zhao J, Han Q F, Zhu J W, Wu X D, Wang X. Nanoscale, 2014, 6:10062.
[25] Ma D C, Zhao J Z, Zhao Y, Hao X L, Lu Y. Chem. Eng. J., 2012, 209:273.
[26] Gao F F, Zhao Y, Li Y W, Wu G G, Lu Y, Song Y H, Huang Z F, Li N, Zhao J Z. J. Colloid. Interf. Sci., 2015, 448:564.
[27] Ma D C, Zhao Y., Zhao J Z, Li Y W, Lu Y, Zhao D J. Superlattice. Microst., 2015, 83:411.
[28] Wang Z, Jiang C L, Huang R, Peng H, Tang X D. J. Phys. Chem. C, 2014, 118:1155.
[29] Cui Z K, Zhang Y G, Li S L, Ge S X. Catal. Commun., 2015, 72:97.
[30] Li J, Fan H Q, Chen J, Liu L J. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2009, 340:66.
[31] Ma D C, Zhao J Z, Zhao Y, Hao X L, Li L Z, Zhang L, Lu Y, Yu C Z. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2012, 395:279.
[32] Ma D C, Zhao J Z, Li Y L, Su X D, Hou S G, Zhao Y, Hao X L, Li L Z. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010, 368:105.
[33] Ma D C, Chu R, Yang S S, Zhao Y, Hao X L, Zhang Li, Lu Y, Yu C Z. Adv. Powder. Technol., 2013, 24:79.
[34] Yin Y D, Erdonmez C, Aloni S, Alivisatos A P. J. Am. Chem. Soc., 2006, 128:12671.
[35] Zhu J J, Kan C X, Wan J G, Han M,Wang G H. J. Nanomater., 2011, 2011:1.
[36] Chen Y, Chen D L, Chen J F, Lu Q J, Zhang M, Liu B T, Wang Q Y, Wang Z F. J. Alloy. Compd., 2015, 651:114.
[37] Liu X W, Cao H Q, Yin J F. Nano Res., 2011, 4:470.
[38] Qu L L, Luo Z J, Tang C. Mater. Res. Bull., 2013, 48:4601.
[39] Chu S S, Yang C, Niu C G, Li Z J, Wang J D, Su X T. Mater. Lett., 2014, 136:366.
[40] Zhang L L, Lyu L, Nie Y L, Hu C. Sep. Purif. Technol., 2016:157:203.
[41] Huang C J, Hu J L, Fan W J, Wu X, Qiu X Q. Chem. Eng. Sci., 2015, 131:155.
[42] Chang C, Zhu L Y, Fu Y, Chu X L. Chem. Eng. J., 2013, 233:305.
[43] Chen Y, Liu B, Chen J, Chen D, Yan X, Xiao W, Ge L, Tu M, Wang Q, Wang Z. Mater. Lett., 2015, 161:289.
[44] Liu Z S, Wu B T. Mat. Sci. Semicon. Proc., 2015, 31:68.
[45] Wang Q S, Song L X, Teng Y, Xia J, Zhao L, Ruan M M. RSC Adv., 2015, 5:80853.
[46] Ma H C, Zhao M, Xing H M, Fu Y H, Zhang X F, Dong X L. J. Mater. Sci:Mater. Electron., 2015, 26:10002.
[47] Zhang X M, Ji G B, Liu Y S, Zhou X G, Zhu Y, Shi D N, Zhang P, Gao X Z, Wang B Y. Phys. Chem. Chem. Phys., 2015, 17:8078.
[48] Chang X F, Wang S B, Qi Q, Gondal M A, Rashid S G, Gao S, Yang D Y, Shen K, Xu Q Y, Wang P. Dalton Trans., 2015, 44:15888.
[49] Gao M C, Zhang D F, Pu X P, Ding K Y, Li H, Zhang T T, Ma H Y. Sep. Purif. Technol., 2015, 149:288.
[50] Chen D L, Zhang M, Lu, Q J, Chen J F, Liu B T, Wang Z F. J. Alloy. Compd., 2015, 646:647.
[51] Zheng C R, Cao C B, Ali Z. Phys. Chem. Chem. Phys., 2015, 17:13347.
[52] Huang Y C, Long B, Li H B, Balogun M S, Rui Z B, Tong Y X, Ji H B. Adv. Mater. Interfaces, 2015, 2:1500249.
[53] Lu S Y, Yu Y N, Bao S J, Liao S H. RSC Adv., 2015, 5:85500.
[54] Huang Y K, Kang S F, Yang Y, Qin H F, Ni Z J, Yang S J, Li X Y. Appl. Catal. B-Environ., 2016, 196:89.
[55] Dong F, Li Q, Sun Y, Ho W K. ACS Catal., 2014, 4:4341.
[56] Sun Y J, Zhao Z W., Dong F, Zhang W. Phys. Chem. Chem.Phys., 2015, 17:10383.
[57] Chandraboss V L, Kamalakkannan J, Prabha S. RSC Adv., 2015, 5:25857.
[58] Dong F, Zhao Z W, Sun Y J, Zhang Y X, Yan S, Wu Z B. Environ. Sci. Technol., 2015, 49:12432.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[9] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[10] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[11] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[12] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
[13] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[14] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[15] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.