中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1569-1577 DOI: 10.7536/PC160623 Previous Articles   Next Articles

Research of Photocatalyst g-C3N4 Using First Principles

Qie Jia, Li Ming, Liu Li, Liang Yinghua, Cui Wenquan*   

  1. Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51672081), the Hebei Natural Science Funds for Distinguished Young Scholar(No. B2014209304), the Key Program of Natural Science of Hebei Province(No.B2016209375), and the Hebei Natural Science Funds for the Joint Research of Iron and Steel(No.B2016209348).
PDF ( 3195 ) Cited
Export

EndNote

Ris

BibTeX

Energy shortage and environmental deterioration are the difficult problems now confronting us in the development of human society. As one of the best and new type energy which is clean, renewable and zero-pollution, solar energy is the best choice to achieve sustainable development, because it is an inexhaustible energy source. The issue that semiconductor photocatalysis can use solar light directly to conduct the photocatalytic reaction has aroused widely public concern. As a kind of low cost and non-metal photocatalyst, graphitic carbon nitride (g-C3N4) shows great application prospects in decomposition of water into hydrogen and oxygen, photocatalytic degradation of organic pollutants, carbon dioxide reduction, antibacterial, selective conversion of organic functional groups, as well as other fields, for its unique electronic band structure, thermal and chemical stability. But at present, g-C3N4 photocatalyst still exists some problems such as small specific surface area, low visible light utilization rate, low light quantum yield, and easy recombination of photo-generated carriers which restrict its application in the field of photocatalysis. Therefore, it has become a key subject in the field of photocatalytic research to improve the photocatalytic activity of g-C3N4. The first principles have the incomparable advantages over semi empirical method, which have become an important basis for the calculation and simulation in the field of photocatalytic research. The wide application of first principles based on density functional theory in the field of photocatalysis provides a clear research means to explore the method to improve the photocatalytic activity of g-C3N4 effectively and quickly. In this review, some important research progress in g-C3N4 modification in recent years is reviewed from the theoretical point of view, including element doping modification, composite modification, morphology control modification and other means of modification. The microscopic mechanism of improved photocatalytic activity of g-C3N4 modified photocatalyst is studied, from the point of view of electronic properties, band structure, optical properties and defect formation energy. Finally, on the basis of summarizing various of the modification research mentioned above, the future development trend of g-C3N4 modified photocatalyst is discussed.

Contents
1 Introduction
2 Molecular model and band structure of g-C3N4
2.1 Molecular model of g-C3N4
2.2 Band structure of g-C3N4
3 Modification research of g-C3N4
3.1 Doping modification
3.2 Composite modification
3.3 Morphology control modification
3.4 Other modification research
4 Conclusion

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] 田蒙奎(Tian M K), 上官文峰(ShangGuan W F), 欧阳自远(OuYang Z Y), 王世杰(Wang S J). 功能材料(Functional Materials), 2005, 36(10):1489.
[3] Daghrir R, Drogui P, Robert D. Ind. Eng. Chem. Res., 2013, 52:3581.
[4] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8:76.
[5] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew. Chem. Int. Ed., 2010, 49:441.
[6] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys. Chem. Chem. Phys., 2012, 14:1455.
[7] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, Carlsson J M. J. Mater. Chem., 2008, 18:4893.
[8] Xin G, Meng Y L. Journal of Chemistry, 2013, 2013:1.
[9] Ji H H, Chang F, Hu X F, Qin W, Shen J W. Chemical Engineering Journal, 2013, 218:183.
[10] Li X H, Zhang J S, Chen X F, Fischer A, Thomas A, Antonietti M, Wang X C. Chemistry of Materials, 2011, 23(19):4344.
[11] Jorge A B, Martin D J, Dhanoa M T S, Rahman A S, Makwana N, Tang J W, Sella A, Cora F, Firth S, Darr J A, Mcmillan P F. Journal of Physical Chemistry C, 2013, 117(14):7178.
[12] Huang Z J, Li F B, Chen B F, Lu T, Yuan Y, Yuan G Q. Applied Catalysis B:Environmental, 2013, 136/137:269.
[13] Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5(1):192.
[14] Zhai H S, Cao L, Xia X H. Chinese Chemical Letters, 2013, 24(2):103.
[15] Liu A Y, Cohen M L. Science, 1989, 245(4920):841.
[16] Teter D M, Hemley R J. Science, 1996, 271(5245):53.
[17] Liu A Y, Cohen M L. Phys. Rev. B:Condens. Matter. Phys., 1990, 41:10727.
[18] Guo Y J, Goddard W A. Chem. Phys. Lett., 1995, 237:72.
[19] 楚增勇(Chu Z Y), 原博(Yuan B), 颜廷楠(Yan T N). 无机材料学报(Journal of Inorganic Materials), 2014, 29(8):785.
[20] Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman A D. New J. Chem., 2002, 26:508.
[21] Xu Y, Gao S P. Int. J. Hydrogen Energy, 2012, 37(15):11072.
[22] Maeda K, Wang X C, Nishihara Y, Lu D L, Antonietti M, Domen K. J. Phys. Chem. C, 2009, 113:4940.
[23] Wang X C, Blechert S, Antonietti M. ACS Catal., 2012, 2:1596.
[24] Zhang Y J, Antonietti M. Chem. -Asian J., 2010, 5:1307.
[25] Zhang Y J, Schnepp Z, Cao J Y, Ouyang S X, Li Y, Ye J H, Liu S Q. Sci. Rep., 2013, 3:2163.
[26] Liu J J. Journal of Alloys and Compounds, 2016, 672:271.
[27] Ma X G, Lv Y H, Xu J, Liu Y F, Zhang R Q, Zhu Y F. J. Phys. Chem. C, 2012, 116:23485.
[28] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136:864.
[29] Kohn W, Sham LJ. Phys. Rev. A, 1965, 140:1133.
[30] Zhang J S, Sun J H, Maeda K, Domen K, Liu P, Antonietti M, Fu X Z, Wang X C. Energy Environ. Sci., 2011, 4:675.
[31] Ran J R, Ma T Y, Gao G P, Du X W, Qiao S Z. Energy Environ. Sci., 2015, 8:3708.
[32] 阮林伟(Ruan L W), 裘灵光(Qiu L G), 朱玉俊(Zhu Y J), 卢运祥(Lu Y X). 物理化学学报(Acta Physico-Chimica Sinica), 2014, 30(1):43.
[33] Wang K, Li Q, Liu B S, Cheng B, Ho W K, Yu J G. Applied Catalysis B:Environmental, 2015, 176/177:44.
[34] Zhou Y J, Zhang L X, Liu J J, Fan X Q, Wang B Z, Wang M, Ren W C, Wang J, Li M L, Shi J L. J. Mater. Chem. A, 2015, 3:3862.
[35] Lin S, Ye X X, Gao X M, Huang J. Journal of Molecular Catalysis A:Chemical, 2015, 406:137.
[36] Dong G H, Zhao K, Zhang L Z. Chem. Commun., 2012, 48(49):6178.
[37] Cui J, Liang S H, Wang X H, Zhang J M. Materials Chemistry and Physics, 2015, 161:194.
[38] Li J H, Shen B, Hong Z H, Lin B Z, Gao B F, Chen Y L. Chem. Commun., 2012, 48:12017.
[39] Ma Z J, Sa R J, Li Q H, Wu K C. Phys. Chem. Chem. Phys., 2016, 18:1050.
[40] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C. J. Am. Chem. Soc., 2012, 134:4393.
[41] Xiang Q J, Yu J G, Jaroniec M. J. Phys. Chem. C, 2011, 115(15):7355.
[42] Xu L, Huang W Q, Wang L L, Tian Z A, Hu W Y, Ma Y M, Wang X, Pan A L, Huang G F. Chem. Mater., 2015, 27:1612.
[43] Li Y B, Zhang H M, Liu P R, Wang D, Li Y, Zhao H J. Small, 2013, 9:3336.
[44] Li X R, Dai Y, Ma Y D, Han S H, Huang B B. Phys. Chem. Chem. Phys., 2014, 16:4230.
[45] Wang J J, Guan Z Y, Huang J, Li Q X, Yang J L. J. Mater. Chem. A, 2014, 2(21):7960.
[46] Hou Y D, Laursen A B, Zhang J S, Zhang G G, Zhu Y S, Wang X C, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52:3621.
[47] Liu J J. J. Phys. Chem. C, 2015, 119:28417.
[48] Zhang X R, Meng Z H, Rao D W, Wang Y H, Shi Q, Liu Y Z, Wu H P, Deng K M, Liu H Y, Lu R F. Energy Environ. Sci., 2016, 9:841.
[49] Shi S, Gondal M A, Rashid S G, Qi Q, Al-Saadi A A, Yamani Z H, Sui Y H, Xu Q Y, Shen K. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 461:202.
[50] Zhang J H, Ren F Z, Deng M S, Wang Y X. Phys. Chem. Chem. Phys., 2015, 17:10218.
[51] Shi H F, Chen G Q, Zhang C L, Zou Z G. ACS. Catal., 2014, 4:3637.
[52] Wang S M, Li D L, Sun C, Yang S G, Guan Y, He H. Applied Catalysis B:Environmental, 2014, 144:885.
[53] Gong Y, Yu H T, Chen S, Guan X. RSC Adv., 2015, 5:83225.
[54] Gao G P, Jiao Y, Ma F X, Jiao Y, L, Waclawik E, Du A J. Phys. Chem. Chem. Phys., 2015, 17:31140.
[55] Liu J, Liu Y, Liu N Y, Han Y Z, Zhang X, Huang H, Lifshitz Y, Lee S, Zhong J, Kang Z H. Science, 2015, 347:970.
[56] Zhang J Y, Wang Y H, Jin J, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl. Mater. Interfaces, 2013, 5:10317.
[57] Jiang G F, Zhou C H, Xia X, Yang F Q, Tong D S, Yu W H, Liu S M. Mater. Lett., 2010, 64:2718.
[58] Gao J, Zhou Y, Li Z S, Yan S C, Wang N Y, Zou Z G. Nanascale, 2012, 4:3687.
[59] Chen X F, Jun Y S, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chemistry of Materials, 2009, 21:4093.
[60] Bai X J, Zong R L, Li C X, Liu D, Liu Y F, Zhu Y F. Applied Catalysis B:Environmental, 2014, 147:82.
[61] Zimmerman J L, Williams R, Khabashesku V N, Margrave J L. Nano Letters, 2001, 1(12):731.
[62] Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z. J. Am. Chem. Soc., 2009, 131:1680.
[63] Liu J, Huang J H, Zhou H, Antonietti M. ACS Applied Materials & Interfaces, 2014, 6:8434.
[64] Ho W K, Zhang Z Z, Lin W, Huang S P, Zhang X W, Wang X X, Huang Y. ACS Applied Materials & Interfaces, 2015, 7:5497.
[65] Lin Z, Zheng J N, Lin G, Tang Z, Yang X Q, Cai Z W. Anal. Chem., 2015, 87:8005.
[66] Pan H, Zhang Y W, Shenoy V B, Gao H J. ACS Catal., 2011, 1:99.
[67] Zhang J Q, An X H, Lin N, Wu W T, Wang L Z, Li Z T, Wang R Q, Wang Y, Liu J X, Wu M B. Carbon, 2016, 100:450.
[68] Ruan L W, Zhu Y J, Qiu L G, Yuan Y P, Lu Y X. Computational Materials Science, 2014, 91:258.
[69] Chen Y, Wang B, Lin S, Zhang Y F, Wang X C. Phys. Chem. C, 2014, 118:29981.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[5] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[6] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[7] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[8] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[9] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[10] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[11] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[12] Yukun Zhao, Yuanyuan Wang, Hongwei Ji, Wanhong Ma, Chuncheng Chen*, Jincai Zhao*. Photocatalytic Reductive Debromination of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2017, 29(9): 911-918.
[13] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[14] Pengyuan Wang, Changsheng Guo, Jianfeng Gao, Jian Xu. Preparation of Graphite Phase C3N4 and Bismuth Based Composite Photocatalyst and Its Environmental Application [J]. Progress in Chemistry, 2017, 29(2/3): 241-251.
[15] Wenbo Zhang, Fangqin Li, Jiang Wu*, Hexing Li*. Mercury Removal Technologies of the Flue Gas from Power Plants [J]. Progress in Chemistry, 2017, 29(12): 1435-1445.