中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1870-1879 DOI: 10.7536/PC160602 Previous Articles   Next Articles

• Review and comments •

Hydrogen Generation by Al-Based Materials Hydrolysis

Zhao Chong, Xu Fen*, Sun Lixian*, Fan Minghui, Zou Yongjin, Chu Hailiang   

  1. Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the NSFC (No. 51361005, 51671062, U1501242, 51371060), Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials (No. 2012GXNSFGA06002), Guangxi NSFC (No. 2014GXNSFAA118319, 2014GXNAFDA118005), and the Guangxi Key Laboratory of Information Materials (No. 161002-Z, 161002-K, 161003-K, 151002-K).
PDF ( 2297 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen as a clean renewable and environmentally friendly energy source with high calorific value is considered to be of great importance to overcome present problem of energy crisis and environmental pollution. Aluminum-water reaction is proved to be one of the most dominant methods among numerous hydrogen generation ways. The paper focuses on the research progress of the technology of hydrogen generation from the hydrolysis of aluminum based materials in recent years. Hydrogen generation in-situ by Al-water reaction is a promising hydrogen storage and transportation way. However, the dense oxide layer on the surface of Al particles hinders the reaction of aluminum with water, making it difficult to produce hydrogen at room temperature and standard atmospheric pressure. In order to fully explore and utilize hydrogen energy, a variety of additives (such as alkali, metal hydride, metallic oxide, inorganic salt, metal and so on) are used for preparing aluminum-based materials. Generally, the preparation methods of the materials include sintering, smelting, ball-milling and other advance techniques. Research results have demonstrated that the above methods are able to effectively activate Al and achieve the aluminum-water reaction at low ambient temperature with short induction time, fast hydrogen production rate and high conversion rate. It may provide H2 on board for fuel cells vehicles.

Contents
1 Introduction
2 Methods of hydrogen generation from aluminum hydrolysis
2.1 Al hydrolysis under alkali condition
2.2 Al-metal hydride composite hydrolysis
2.3 Al-metallic oxide composite hydrolysis
2.4 Al-inorganic salt composite hydrolysis
2.5 Al-metal alloy hydrolysis
3 Conclusion and outlook

CLC Number: 

[1] Sheindlin A E, Zhuk A Z. Herald Russ. Acad. Sci., 2010, 80:143.
[2] 周洁(Zhou J), 郑颖平(Zheng Y P), 谢吉虹(Xie J H). 化工时刊(Chemical IndustryTimes), 2007, 21(5):71.
[3] Wang H Z, Leung D Y C, Leung M K H, Ni M. Renew Sust. Energ. Rev., 2009, 13:845.
[4] 马广璐(Ma G L), 庄大为(Zhuang D W), 戴洪斌(Dai H B), 王平(Wang P). 化学进展(Progress in Chemistry), 2012, 24(4):650.
[5] 刘光明(Liu G M), 解东来(Xie D L). 电源技术(Power Source Technology), 2011, 35(1):109.
[6] 刘姝(Liu S), 范美强(Fan M Q), 李璐(Li L), 黄岳祥(Huang Y X), 陈达(Chen D), 舒康颖(Shu K Y). 电源技术(Power Source Technology), 2011, 35(3):334.
[7] Huang X, Gao T, Pan X, Wei D, Lv C, Qin L, Huang Y. J. Power Sources, 2013, 229:133.
[8] 万俊(Wan J). 华中科技大学硕士论文(Master Dissertation of Huazhong University of Science and Technology), 2012.
[9] Coursol P, Dufour G, Cote J, Chartrand P, Mackey P. Jom, 2012, 64:1326.
[10] Uehara K, Takeshita H, Kotaka H. J. Mater. Process Tech., 2002, 127:174.
[11] 王芳(Wang F), 刘光明(Liu G M), 解东来(Xie D L). 电源技术(Power Source Technology), 2012, 36(2):198.
[12] Ma G L, Dai H B, Zhuang D W, Xia H J, Wang P. Int. J. Hydrogen Energ., 2012, 37:5811.
[13] Soler L, Maria C A, Macanas J, Munoz M, Casado J. J. Power Sources, 2009, 192:21.
[14] Soler L, Maria C A, Macanas J, Munoz M, Casado J. Int. J. Hydrogen Energ., 2010, 35:1038.
[15] Soler L, Maria C A, Macanas J, Munoz M, Casado J. Int. J. Hydrogen Energ., 2009, 34:8511.
[16] Martinez S S, Sanchez L A, Gallegos A A A, Sebastian P J. Int.J. Hydrogen Energ., 2007, 32:3159.
[17] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. Energy, 2014, 72:421.
[18] Zhang H, Geerlings H, Lin J, Chin W S. Int. J. Hydrogen Energ., 2011, 36:7580.
[19] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. RSC Adv., 2015, 5:60460.
[20] Billur S, Farida L D, Michael H. Int. J. Hyrogen Energ., 2007, 32:1121.
[21] Choi Y J, Lu J, Sohn H Y, Fang Z Z. J. Phys. Chem. C, 2011, 115:6040.
[22] 兰晓芬(Lan X F). 辽宁师范大学硕士论文(Master Dissertation of Liaoning Normal University), 2012.
[23] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. Energy, 2015, 89:907.
[24] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. Energy, 2015, 84:714.
[25] 刘昊(Liu H), 徐芬(Xu F), 孙立贤(Sun L X), 曹忠(Cao Z), 周怀营(Zhou H Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, 34(8):1953.
[26] Shafirovich E, Diakov V, Varma A. Combust. Flame, 2006, 144:415.
[27] Wu T, Xu F, Sun L X, Cao Z, Chu H L, Sun Y J, Wang L, Chen P H, Chen J, Pang Y, Zou Y F, Qiu S J, Xiang C L, Zhang H Z. Int. J. Hydrogen Energ., 2014, 39:10392.
[28] 王爽(Wang S), 孙立贤(Sun L X). 电源技术(Power Source Technology), 2015, 39(5):925.
[29] Skrovan J, Troczynski T, Alfantazi A. Corrosion (Eds. Hansen D C, Alfantazi A, Gelling V J). Vancouver:ECS Trans., 2010. 157.
[30] Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J. Int. J. Hydrogen Energ., 2010, 35:9561.
[31] Gai W Z, Fang C S, Deng Z Y. Int. J. Energ. Res., 2014, 38:918.
[32] Gai W Z, Shi Y, Deng Z Y, Zhou J G. Int. J. Hydrogen Energ., 2015, 40:12057.
[33] Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrogen Energ., 2012, 37:13132.
[34] Skrovan J, Alfantazi A, Troczynski T. J. Appl. Electrochem., 2009, 39:1695.
[35] 孙洋(Sun Y), 谢佳琦(Xie J Q), 刘美佳(Liu M J), 周雯慧(Zhou W H), 李润东(Li R D). 可再生能源(Renewable Energy), 2014, 32(7):1038.
[36] 方银娥(Fang Y E). 沈阳航空航天大学硕士论文(Master Dissertation of Shenyang Aerospace University), 2011.
[37] Wang H, Lu J, Dong S J, Chang Y, Fu Y G, Luo P. Mater. Trans., 2014, 55:892.
[38] Chen X, Zhao Z, Hao M, Wang D. J. Power Sources, 2013, 222:188.
[39] Teng H T, Lee T Y, Chen Y K, Wang H W, Cao G. J. Power Sources, 2012, 219:16.
[40] Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrogen Energ., 2011, 36:4781.
[41] 贾艳艳(Jia Y Y), 沈洁(Shen J), 孟海霞(Meng H X), 柴玉俊(Chai Y J), 王宁(Wang N). 电源技术(Power Source Technology), 2013, 37(12):2138.
[42] Huang X N, Wu Z H, Cao K, Zeng W, Lv C J, Huang Y X. Materials for Energy Conversion and Storage (Eds. Zhang H). Shenzhen:Key Engineering Materials, 2012. 87.
[43] Niu F, Huang X, Gao T, Wang J, Qin L, Huang Y. Energy Technology, 2014, 2:593.
[44] Mahmoodi K, Alinejad B. Int. J. Hydrogen Energ., 2010, 35:5227.
[45] 朱勤标(Zhu Q B), 常鹰(Chang Y), 董仕节(Dong S J), 罗平(Luo P). 材料导报(Materials Review), 2014, 28(23):311.
[46] Gudic S, Smoljko I, Kliskic M. J. Alloys Compd., 2010, 505:54.
[47] Alinejad B, Mahmoodi K. Int. J. Hydrogen Energ., 2009, 34:7934.
[48] Czech E, Troczynski T. Int. J. Hydrogen Energ., 2010, 35:1029.
[49] Fan M Q, Sun L X, Xu F. Energy, 2010, 35:1333.
[50] Xu F, Sun L, Lan X, Chu H, Sun Y, Zhou H, Li F, Yang L, Si X, Zhang J, Walter S, Gabelica Z. Int. J. Hydrogen Energ., 2014, 39:5514.
[51] 黄霞妮(Huang X N). 中国计量学院硕士论文(Master Dissertation of China Jiliang University), 2013.
[52] Wang H H, Chang Y, Dong S J, Lei Z F, Zhu Q B, Luo P, Xie Z X. Int. J. Hydrogen Energ., 2013, 38:1236.
[53] Ilyukhina A V, Ilyukhin A S, Shkolnikov E I. Int. J. Hydrogen Energ., 2012, 37:16382.
[54] Ziebarth J T, Woodall J M, Kramer R A, Choi G. Int. J. Hydrogen Energ., 2011, 36:5271.
[55] Baniamerian M J, Moradi S E. J. Alloys Compd., 2011, 509:6307.
[56] Huang T, Gao Q, Liu D, Xu S, Guo C, Zou J, Wei C. Int. J. Hydrogen Energ., 2015, 40:2354.
[57] Jia Y Y, Shen J, Meng H X, Dong Y M, Chai Y J, Wang N. J. Alloys Compd., 2014, 588:259.
[58] 李洋(Li Y). 吉林大学硕士论文(Master Dissertation of Jilin University), 2015.
[59] 程凯(Cheng K). 燕山大学硕士论文(Master Dissertation of Yanshan University), 2014.
[60] Yoo J H, Yun K S, Kalubarme R S, Park C N, Park C J. Met. Mater. Int., 2014, 20:619.
[61] Wang N, Meng H X, Dong Y M, Jia Z L, Gao L J, Chai Y J. Int. J. Hydrogen Energ., 2014, 39:16936.
[62] Meng H X, Wang N, Dong Y M, Jia Z L, Gao L J, Chai Y J. J. Power Sources, 2014, 268:550.
[63] Wang Y, Zhou L T, Yuan H, Shen W H, Tang R, Fan M Q, Shu K Y. Int. J. Electrochem. Sci., 2013, 8:9764.
[64] Razavi S S, Szpunar J A. Int. J. Hydrogen Energ., 2013, 38:795.
[65] Fan M Q, Wang Y, Tian G L, Mei D S, Chen D, Shu K Y. Int. J. Hydrogen Energ., 2013, 38:10857.
[66] Zou M S, Guo X Y, Huang H T, Yang R J, Zhang P. J. Power Sources, 2012, 219:60.
[67] Huang X N, Lv C J, Wang Y, Shen H Y, Chen D, Huang Y X. Int. J. Hydrogen Energ., 2012, 37:7457.
[68] Fan M Q, Liu S, Sun W Q, Fei Y, Pan H, Shu K Y. Renewable Energy, 2012, 46:203.
[69] Fan M Q, Liu S, Sun L X, Xu F, Wang S, Zhang J, Mei D S, Huang F L, Zhang Q M. Int. J. Hydrogen Energ., 2012, 37:4571.
[70] 陈博(Chen B). 吉林大学硕士论文(Master Dissertation of Jilin University), 2013.
[71] 赵欣明(Zhao X M). 辽宁大学硕士论文(Master Dissertation of Liaoning University), 2012.
[72] Reboul M C, Gimenez P, Rameau J J. Corrosion Houston Tx, 1984, 40:366.
[73] 李振亚(Li Z Y), 易玲(Yi L), 刘稚蕙(Liu Z H), 杨林(Yang L), 苏景新(Su J X), 陈艳英(Chen Y Y). 电化学(Journal of Electrochemistry), 2001, 7(3):316.
[74] Kravchenko O V, Semenenko K N, Bulychev B M, Kalmykov K B. J. Alloys Compd., 2005, 397:58.
[75] Muntyan S P, Volodina G F, Grabko D Z, Zhitar V F. Surf. Eng. Appl. Electrochem., 2009, 45:347.
[76] Parmuzina A V, Kravchenko O V. Int. J. Hydrogen Energ., 2008, 33:3073.
[77] Parmuzina A V, Kravchenko O V, Bulychev B M, Shkol'nikov E I, Burlakova A G. Russ. Chem. Bull., 2009, 58:493.
[78] Hu X, Zhu G, Zhang Y, Wang Y, Gu M, Yang S, Song P, Li X, Fang H, Jiang G, Wang Z. Int. J. Hydrogen Energ., 2012, 37:11012.
[79] Wang W, Chen D M, Yang K. Int. J. Hydrogen Energ., 2010, 35:12011.
[80] Yuan B, Tan S, Liu J. Int. J. Hydrogen Energ., 2016, 41:1453.
[81] Yang W, Zhang T, Zhou J, Shi W, Liu J, Cen K. Energy, 2015, 88:537.
[82] Wang W, Chen W, Zhao X M, Chen D M, Yang K. Int. J. Hydrogen Energ., 2012, 37:18672.
[83] Liu S, Fan M Q, Chen D, Lv C J. Energy Sources, 2015, 37:356.
[84] 赵林(Zhao L). 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2012.
[85] 刘姝(Liu S). 中国计量学院硕士论文(Master Dissertation of China Jiliang University), 2012.
[86] Elitzur S, Rosenband V, Gany A. Int. J. Hydrogen Energ., 2014, 39:6328.
[87] Liu S, Wang L I, Yao J, Sun W Q, Fan M Q. T. Nonfer. Metal Soc, 2012, 22:1140.
[88] Liu S, Fan M Q, Wang C, Huang Y X, Chen D, Bai L Q, Shu K. Int. J. Hydrogen Energ., 2012, 37:1014.
[89] Liu J B, Tang L, Li C, Tang B H, Xiao X, Xing H W, Fan M Q. J. New Mat. Electr. Sys., 2012, 15:283.
[90] Chen X Y, Zhao Z W, Liu X H, Hao M M, Chen A L, Tang Z Y. J. Power Sources, 2014, 254:345.
[91] Ilyukhina A V, Kravchenko O V, Bulychev B M, Shkolnikov E I. Int. J. Hydrogen Energ., 2010, 35:1905.
[92] 崔海洋(Cui H Y), 卜建杰(Bu J J), 郑邯勇(Zheng H Y), 赵文忠(Zhao W Z), 陈支厦(Chen Z X). 推进技术(Journal of Propulsion Technology), 2013, 34(6):849.
[93] Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energ., 2007, 32:2809.
[94] Chen X, Zhao Z, Liu X, Hao M, Chen A, Tang Z. J. Power Sources, 2014, 254:345.
[95] 陈星宇(Chen X Y). 中南大学博士论文(Doctoral Dissertation of Central South University), 2010.
[96] Zhao Z, Chen X, Hao M. Energy, 2011, 36:2782.
[97] Jia Y, Shen J, Meng H, Dong Y, Chai Y, Wang N. J. Alloys Compd., 2014, 588:259.
[98] Liu J, Fei Y, Pan H, Fan M, Wang L, Yao J. J. Rare Earths, 2012, 30:548.
[99] Chai Y J, Dong Y M, Meng H X, Jia Y Y, Shen J, Huang Y M, Wang N. Energy, 2014, 68:204.
[100] Sun W Q, Fan M Q, Fei Y, Pan H, Wang L L, Yao J. Sci. World J., 2012, 2012:150973.
[101] Luo H, Liu J, Pu X, Liang J, Wang Z, Wang F, Zhang K, Peng Y, Xu B, Li J, Yu X. J. Am. Ceram. Soc., 2011, 94:3976.
[102] 罗辉(Luo H). 上海师范大学硕士论文(Master Dissertation of Shanghai Normal University), 2012.
[103] Fan M Q, Xu F, Sun L X, Zhao J N, Jiang T, Li W X. J. Alloys Compd., 2008, 460:125.
[104] Wang C, Liu Y, Liu H, Yang T, Chen X, Yang S, Liu X. Sci. Rep-UK, 2015, 5:17428.
[105] Lin M C, Uan J Y, Tsai T C. Int. J. Hydrogen Energ., 2012, 37:13731.
[106] Fan M Q, Wang Y, Tang R, Chen D, Liu W, Tian G L. Renew. Energ., 2013, 60:637.
[107] Yu M, Kim M, Yoon B, Oh S, Nam D H, Kwon H. Int. J. Hydrogen Energ., 2014, 39:19416.
[108] Yang Y, Gai W Z, Deng Z Y, Zhou J G. Int. J. Hydrogen Energ., 2014, 39:18734.
[1] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[2] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[3] Ruqin Liu, Zhirong Suo, Naizhen He, Shuang Chen, Ming Huang. Azo-Bridged Coupling Bisfurazan: Synthesis and Its Structure-Function Relationship Between Molecular Structure and Melting Point [J]. Progress in Chemistry, 2017, 29(5): 476-490.
[4] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Wang Jianlong, Yang Minggao. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application [J]. Progress in Chemistry, 2015, 27(4): 424-435.
[5] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Yang Minggao, Wang Jianlong. The Key Materials and Components for Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
[6] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.
[7] He Fei, Peng Ranran, Yang Shangfeng. Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism [J]. Progress in Chemistry, 2011, 23(0203): 477-486.
[8] Cheng Wang1*,Zongqiang Mao1,Ronghua Chen2,Gehua Wang1,Xiaofeng Xie1. Current Research Status of Small Fuel Cells and Its Application Analysis [J]. Progress in Chemistry, 2006, 18(01): 30-35.