中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1541-1549 DOI: 10.7536/PC160537 Previous Articles   Next Articles

Stimulus-Responsive Supramolecular Gels

Lu Tao-Tao1, Liu Juan2, Li Hui1, Wei Tai-Bao1, Zhang You-Ming1, Lin Qi1*   

  1. 1. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;
    2. College of Chemical Engineering, Northwest University for Nationalities, Lanzhou 730030, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21574104, 21161018, 21262032).
PDF ( 1625 ) Cited
Export

EndNote

Ris

BibTeX

With the increasing development of supramolecular chemistry, stimulus-responsive supramolecular gels as a supramolecular material attract more attention. Supramolecular gels are self-assembled by non-covalent forces, when supramolecular gels are stimulated by temperature, light, pH, chemistry substances, mechanical strength etc., the gels can produce the appropriate response, such as sol-gel transition, change in color or fluorescence. Stimulus-responsive supramolecular gels have very good prospects in the areas of ion recognition materials, self-healing materials and biomaterials. This paper reviews the progress of stimulus responsive supramolecular gels in the past five years. According to the different types of stimulation, the gels are devided into the following categories:heat-sensitive organic gel, chemistry substances and pH-responsive supramolecular gels, light-sensitive organic gel, redox-responsive supramolecular gel, mechanical force-responsive supramolecular gels and multiple stimuli-responsive supramolecular gel. According to these classifications, the supramolecular gels are introduced and at the same time,the developing orientation for further research is presented.

Contents
1 Introduction
2 The heat-sensitive supramolecular gel
3 Chemicals substances and pH-responsive supramolecular gels
3.1 Ions-responsive supramolecular gels
3.2 Compounds-responsive supramolecular gels
3.3 pH-responsive supramolecular gels
4 Light-sensitive supramolecular gel
5 Redox-responsive supramolecular gel
6 Mechanical force-responsive supramolecular gel
7 Multiple stimuli-responsive supramolecular gel
8 Conclusion and outlook

CLC Number: 

[1] Segarra-Maset M D, Nebot V J, Miravet J F, Escuder B. Chem. Soc. Rev., 2013, 42:7086.
[2] Yu G C, Yan X Z, Han C Y, Huang F H. Chem. Soc. Rev., 2013, 42:6697.
[3] Babu S S, Praveen V K, Ajayaghosh A. Chem. Rev., 2014, 114:1973.
[4] Peng H Q, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. Chem. Rev., 2015, 115:7502.
[5] Tam A Y Y, Yam V W W. Chem. Soc. Rev., 2013, 42:1540.
[6] Segarra-Maset M D, Nebot V J, Miravet J F, Escuder B. Chem.Soc.Rev., 2013, 42:7086.
[7] Senguptaa S, Mondal R. RSC Adv., 2016, 6:14009.
[8] Kumar D K, Steed J W. Chem. Soc. Rev., 2014, 43:2080.
[9] Wei Z, Yang J H, Zhou J X, Xu F, Zrínyi M, Dussault P H, Osadag Y, Chen Y M. Chem. Soc. Rev., 2014, 43:8114.
[10] Liu Y C, Wang Y, Jin L Y, Chen T Yin B Z. Soft Matter, 2016, 12:934.
[11] Babu S S, Praveen V K, Ajayaghosh A. Chem. Rev., 2014, 114:1973.
[12] Du X W, Zh J, Shi J F, Xu B. Chem. Rev., 2015, 115:13165.
[13] Jie K C, Zhou Y J, Yao Y, Huang F H. Chem. Soc. Rev., 2015, 44:3568.
[14] Jung S H, Kim K Y, Woo D K, Lee S S, Jung J H. Chem. Commun., 2014, 50:13107.
[15] Yao Y, Chi X D, Zhou Y J, Huang F H. Chem. Sci., 2014, 5:2778.
[16] Yu X D, Chen L M, Zhang M M, Yi T. Chem. Soc. Rev., 2014, 43:5346.
[17] Ma X X, Zhang J J, Tang N, Wu J C. Dalton Trans., 2014, 43:17236.
[18] Anees P, Sreejith S, Ajayaghosh A. J. Am. Chem. Soc., 2014, 136:13233.
[19] Castelletto V, Hamley I W, Segarra-Maset M D, Gumbau C B, Miravet J F, Escuder B, Seitsonen J, Ruokolainen J. Biomacromolecules, 2014, 15:591.
[20] Chen C T, Chen C H, Ong T G. J. Am. Chem. Soc., 2013, 135:5294.
[21] Zhou M, Liu K Y, Qian X. J. Appl. Polym. Sci., 2016, DOI:10.1002/APP.43279.
[22] Mayoral M J, Rest C, Stepanenko V, Schellheimer J, Albuquerque R Q, Fernández G. J. Am. Chem. Soc., 2013, 135:2148.
[23] Aparicio F, Nieto-Ortega B, Nájera F, Ramírez F J, Navarrete J T L, Casado J, Sánchez L. Angew. Chem. Int. Ed., 2014, 53:1373.
[24] Reid R, Sgobba M, Raveh B, Rastelli G, Sali A, Santi D V. Macromolecules, 2015, 48(19):7359.
[25] Yu G C, Yan X Z, Hana C Y, Huang F H. Chem. Soc. Rev., 2013, 42:6697.
[26] Ka-Man Au V, Zhu N Y, Yam V W W. Inorganic Chem., 2013, 52(2):558.
[27] Zang L B, Shang H X, Wei D Y, Jiang S M. Sensors and Actuators B. 2013, 185:389.
[28] Ghosh S, Mahapatra R D, Dey J. Langmuir, 2014, 30(6):1677.
[29] Zhong D C, Liao L Q, Wang K J, Liu H J, Luo X Z. Soft Matter, 2015, 11:6386.
[30] Buerklea L E, Rowan S J. Chem. Soc. Rev., 2012, 41:6089.
[31] Zhang Y M, Lin Q, Wei T B, Qin X P, Li Y. Chem. Commun., 2009, 6074.
[32] Lin Q, Yang Q P, Sun B, Fu Y P, Zhu X, Wei T B, Zhang Y M. Soft Matter, 2014, 10:8427.
[33] Lin Q, Sun B, Yang Q P, Fu Y P, Zhu X, Wei T B, Zhang Y M. Chem. Eur. J., 2014, 20:1.
[34] Lin Q, Sun B, Yang Q P, Fu Y P, Zhu X, Zhang Y M, Wei T B. Chem. Commun., 2014, 50:10669.
[35] Lin Q, Zhu X, Fu Y P, Yang Q P, Sun B, Wei T B, Zhang Y M. Dyes and Pigments, 2015, 113:748.
[36] Lin Q, Zhu X, Fu Y P, Zhang Y M, Fang R, Yang L Z, Wei T B. Soft Matter, 2014, 10:5715.
[37] Lin Q, Lu T T, Zhu X, Sun B, Yang Q P, Wei T B, Zhang Y M. Chem. Commun., 2015, 51:1635.
[38] Lin Q, Lu T T, Lou J C, Wu G Y, Wei T B, Zhang Y M, Chem. Commun., 2015, 51:12224.
[39] Lin Q, Lu T T, Zhu X, Wei T B, Li H, Zhang Y M. Chem. Sci., 2016, DOI:10.1039/C6SC00955G.
[40] Zhang Y M, Shi B B, Li H, Qu W J, Gao G Y., Lin Q, Yao H, Wei T B. Polym. Chem., 2014, 5:4722.
[41] Yao H, Wu H P, Chang J, Lin Q, Wei T B,Zhang Y M. New J. Chem., 2016, DOI:10.1039/C5NJ03422A.
[42] Li H, Zhu Y R, Shi B B, Wu G Y, Zhang Y M, Lin Q, Yao H, Wei T B. Chin. J. Chem., 2015, 33:373.
[43] Xing L B, Yang B, Wang X J, Wang J J, Chen B, Wu Q H, Peng H X, Zhang L P, Tung C H, Wu L Z. Langmuir, 2013, 29(9):2843.
[44] Kumari S, Chauhan G S. Applied Materials & Interfaces., 2014, 6(8):5908.
[45] Ghosh K, Panja S, Bhattacharya S. RSC Adv., 2015, 5:72772.
[46] Yu G C, Jie K C, Huang F H. Chem. Rev., 2015, 115:7240.
[47] Ji X F, Shi B B, Wang H, Xia D Y, Jie K C, Wu Z L, Huang F H. Adv. Mater., 2015, 27:8062.
[48] Chen L, Jiang F L, Lin Z Z, Zhou Y F, Yue C Y, Hong M C. J. Am. Chem. Soc., 2005, 127(24):8588.
[49] Wei T B, Li H, Y R Zhu, Lu T T, Shi B B, Lin Q, Yao H, Zhang Y M. RSC Adv., 2015, 5:60273.
[50] Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Langmuir, 2013, 29(18):5435.
[51] Jie K C, Zhou Y J, Yao Y, Shi B B, Huang F H. J. Am. Chem. Soc., 2015, 137:10472.
[52] Fang L, Hu Y L, Li Q, Xu S T, Dhinakarank M K, Gong W T, Ning G L. Org. Biomol. Chem., 2016, DOI:10.1039/C6OB00064A.
[53] Tran-Thi T H, Dagnelie R, Crunaire S, Nicole L. Chem. Soc. Rev., 2011,40:621.
[54] Samai S, Sapsanis C, Patil S P, Ezzeddine A, Moosa B A, Omran H, Emwas A H, Salama K N, Khashab N M. Soft Matter, 2016, 12:2842.
[55] Chen C T, Chen C H, Ong T G. J. Am. Chem. Soc., 2013, 135:5294.
[56] Gasnier A, Bucher C, Moutet J C, Royal G, Saint-Aman E, Terech P. Macromol. Symp., 2011, 304:87.
[57] Dhara B, Patra P P, Jha P K, Jadhav S V, Kumar G V P, Ballav N J. Phys. Chem. C, 2014, 118:19287.
[58] Xia W, Ni M F, Yao C H, Wang X L, Chen D Z, Lin C, Hu X-Y, Wang L Y. Macromolecules, 2015, 48:5456.
[59] Yu X D, Chen L M, Zhang M M, Yi T. Chem. Soc. Rev., 2014, 43:5346.
[60] Herpt J T V, Stuart M C A, Browne W R, Feringa B L. Langmuir, 2013, 29:8763.
[61] Roy S, Katiyar A K, Mondal S P, Ray S K, Biradha K. ACS Appl. Mater. Interfaces, 2014, 6:11493.
[62] Maity S, Kumar P, Haldar D. Soft Matter, 2011, 7(11):5239.
[63] Zhang M, Meng L, Cao X, Jiang M, Yi T. Soft Matter, 2012, 8(16):4494.
[64] Li Z Y, Zhang Y Y, Zhang C W, Chen L J, Wang C, Tan H W, Yu Y H, Li X P, Yang H B. J. Am. Chem. Soc., 2014, 136(24):8577.
[65] Dong S Y, Zheng B, Xu D H, Yan X Z, Zhang M M, Huang F H. Adv. Mater., 2012, 24:3191.
[66] Yan X Z, Xu D H, Chi X D, Chen J Z, Dong S Y, Ding X, Yu Y H, Huang F H. Adv. Mater., 2012, 24:362.
[67] Liu Z X, Feng Y, Yan Z C, He Y M, Liu C Y, Fan Q H. Chem. Mater., 2012, 24:3751.
[68] Yuan C, Guo J N, Tan M, Guo M Y, Qiu L H, Yan F. ACS Macro Lett., 2014, 3:271.
[69] Xie F, Qin L, Liu M H. Chem. Commun., 2016, 52:930.
[70] Chen H, Feng Y, Deng G J, Liu Z X, He Y M, Fan Q H. Chem. Eur. J., 2015, 21:11018.
[1] Huihui Xu, Qingsong Wang, Junjie Mao, Bihai Tong, Qianfeng Zhang. Triptycene Based Electroluminescent Materials [J]. Progress in Chemistry, 2024, 36(3): 393-400.
[2] Tan Shi, Donghui Kou, Yanan Xue, Shufen Zhang, Wei Ma. Saccharide Sensors Based on Phenylboronic Acid Derivatives [J]. Progress in Chemistry, 2024, 36(1): 106-119.
[3] Wei Tang, Yan Bing, Xudong Liu, Hongji Jiang. Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks [J]. Progress in Chemistry, 2023, 35(10): 1461-1485.
[4] Chubin Zhao, Hailin Wang. Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules [J]. Progress in Chemistry, 2023, 35(10): 1486-1491.
[5] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[6] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[7] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[8] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[9] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[10] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[11] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[12] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[13] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[14] Shijia Li, Ernan Pang, Caihong Hao, Tingting Cai, Shengliang Hu. Preparation of Solid-State Fluorescent Carbon Dots [J]. Progress in Chemistry, 2020, 32(5): 548-561.
[15] Yuehua Yuan, Yongjun Zhu, Wei Hu, Jun Qin, Maozhong Tian, Feng Feng. Double Recognition Fluorescence Probes for Copper and Mercury Ions Based on Small Molecules [J]. Progress in Chemistry, 2019, 31(4): 550-560.
Viewed
Full text


Abstract