中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1550-1559 DOI: 10.7536/PC160516 Previous Articles   Next Articles

Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs

Zhang Xiaodong1*, Yang Yang1, Li Hongxin1, Zou Xuejun2*, Wang Yuxin3*   

  1. 1. Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. College of Environment and Resources, Dalian Nationalities University, Dalian 116600, China;
    3. Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou 318000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21507086) and Shanghai Sailing Program (No. 14YF1409900, 16YF1408100).
PDF ( 1052 ) Cited
Export

EndNote

Ris

BibTeX

In this paper, research progress about the utilization of non-TiO2 photocatalysts in degradation of gaseous VOCs are reviewed. We give a concise overview of several novel non-TiO2 photocatalysts with a focus in their structure, which affect the catalytic activities, including metal oxide, wide bandgap p-block metal oxides/hydroxides, perovskite-type, spinel-type, bismuth based compounds, vanadium based compounds, et al. In addition, the research progress of influence factors of non-TiO2 photocatalytic purification of gaseous VOCs exhaust is summarized from photocatalytic reaction conditions (such as VOCs initial concentration, flow rate, light source, light intensity, reaction temperature and humidity). Finally, the fundamental challenges and perspectives of non-TiO2 photocatalysts are briefly brought up.

Contents
1 Introduction
2 Non-TiO2 photocatalytic oxidation of VOCs
2.1 Metal oxide photocatalysts
2.2 Wide bandgap p-block metal oxides/hydroxides photocatalysts
2.3 Perovskite-type oxides photocatalysts
2.4 Spinel-type photocatalysts
2.5 Bismuth based photocatalysts
2.6 Vanadium based photocatalysts
2.7 Other photocatalysts
3 The effect of process parameters on VOCs purification
3.1 The initial concentration of VOCs and flow rate
3.2 The light source and light intensity
3.3 Temperature and humidity
3.4 Other parameters
4 Conclusion and outlook

CLC Number: 

[1] Ou J M, Zheng J Y, Li R R, Huang X B, Zhong Z M, Zhong L J, Lin H. Sci. Total Environ., 2015, 530/531:393.
[2] 张晓东(Zhang X D), 王吟(Wang Y), 杨一琼(Yang Y Q), 陈丹(Chen D).物理化学学报(Acta Physico-Chimica Sinica), 2015, 31(9):1633.
[3] Fujishima A, Honda K. Nature, 1972, 238:37.
[4] 邹学军(Zou X J), 李新勇(Li X Y), 曲振平(Qu Z P), 王疆疆(Wang J J). 环境科学(Environmental Science), 2011, 32(12):3694.
[5] 邹学军(Zou X J), 李新勇(Li X Y), 肇启东(Zhao Q D), 陈国华(Chen G H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(5):1046.
[6] Zou X J, Li X Y, Qu Z P, Zhao Q D, Shi Y, Chen Y Y, Tade M, Liu S M. Mater. Res. Bull., 2012, 47:279.
[7] Zou X J, Li X Y, Zhao Q D, Liu S M. J. Colloid Interface Sci., 2012, 383:13.
[8] Li X Y, Zou X J, Qu Z P, Zhao Q D, Wang L Z. Chemosphere, 2011, 83:674.
[9] Zou X J, Dong Y Y, Zhang X D, Cui Y B. Appl. Surf. Sci., 2016, 366:173.
[10] Fagan R, McCormack D E, Dionysiou D D, Pillai S C. Mater. Sci. Semicond. Process., 2016, 42:2.
[11] Huang Y, Ho S S H, Lu Y F, Niu R Y, Xu L F, Cao J J, Lee S C. Molecules, 2016, 21:56.
[12] 崔星(Cui X), 石建稳(Shi J W),陈少华(Chen S H). 化工进展(Chemical Industry and Engineering Progress), 2013, 32(10):2377.
[13] 王会香(Wang H X), 姜东(Jiang D), 吴东(Wu D), 李德宝(Li D B), 孙予罕(Sun Y H). 化学进展(Progress in Chemistry), 2012, 24(11):2116.
[14] Wang Y X, Li X Y, Lu G, Quan X, Chen G H. J. Phys. Chem. C, 2008, 112:7332.
[15] Wang Y X, Li X Y, Lu G, Chen G H, Chen Y Y. Mater. Lett., 2008, 62:2359.
[16] Wang Y X, Li X Y, Wang N, Quan X, Chen Y Y. Sep. Purif. Technol., 2008, 62:727.
[17] Liao Y C, Xie C S, Liu Y, Huang Q W. J. Alloys Compd., 2013, 550:190.
[18] Rezaee A, Rangkooy H, Khavanin A, Jafari A J. Environ. Chem. Lett., 2014, 12:353.
[19] Xie W, Li Y Z, Shi W Q, Zhao L, Zhao X J, Fang P F, Zheng F, Wang S J. Chem. Eng. J., 2013, 213:218.
[20] Wang Y X, Yang Y Q, Xi L M, Zhang X D, Jia M H, Xu H M, Wu H G. Mater. Lett., 2016, 180:55.
[21] Yang Y Q, Li H X, Hou F L, Hu J Y, Zhang X D, Wang Y X. Mater. Lett., 2016, 180:97.
[22] Zhang X D, Wang Y X, Hou F L, Li H X, Yang Y, Yang Y Q, Wang Y. Appl. Surf. Sci., doi:10.1016/j.apsusc.2016.06.109.
[23] Chu D R, Mo J H, Peng Q, Zhang Y P, Wei Y G, Zhuang Z B, Li Y D. ChemCatChem., 2011, 3:371.
[24] Zhang F, Li X Y, Zhao Q D, Zhang Q Z, Tadé M, Liu S M. J. Colloid Interface Sci., 2015, 457:18.
[25] 曲振平(Qu Z P), 张晓东(Zhang X D), 陈丹(Chen D), 李新勇(Li X Y), 闻梦(Weng M), 王奕(Wang Y), 马丁(Ma D), 吴晶晶(Wu J J). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(7):1605.
[26] Qu Z P, Yu F L, Zhang X D, Wang Y, Gao J S. Chem. Eng. J., 2013, 229:522.
[27] Mao M Y, Lv H Q, Li Y Z, Yang Y, Zeng M, Li N, Zhao X J. ACS Catal., 2016, 6:418.
[28] Li Y Z, Sun Q, Kong M, Shi W Q, Huang J C, Tang J W, Zhao X J. J. Phys. Chem. C, 2011, 115:14050.
[29] Qu Z P, Bu Y B, Qin Y, Gao K, Wang Y, Fu Q. Appl. Catal. B, 2013, 132/133:353.
[30] Qu Z P, Bu Y B, Qin Y, Wang Y, Fu Q. Chem. Eng. J., 2012, 209:163.
[31] Liu F, Zeng M, Li Y Z, Yang Y, Mao M Y, Zhao X J. Adv. Funct. Mater., 2016, 26:4518.
[32] Yu F L, Qu Z P, Zhang X D, Fu Q, Wang Y. J. Energy Chem., 2013, 22(6):845.
[33] Jiang D, Wang W Z, Zhang L, Qiu R H, Sun S M, Zheng Y L. Appl. Catal. B, 2015, 165:399.
[34] Wang G, Huang B B, Lou Z Z, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Appl. Catal. B, 2016, 180:6.
[35] Zheng Y L, Wang W Z, Jiang D, Zhang L. Chem. Eng. J., 2016, 284:21.
[36] Ma Y, Li Y Z, Mao M Y, Hou J T, Zeng M, Zhao X J. J. Mater. Chem. A, 2015, 3:5509.
[37] Hou J T, Li Y Z, Mao M Y, Yue Y Z, Greaves G N, Zhao X J. Nanoscale, 2015, 7:2633.
[38] Mao M Y, Li Y Z, Hou J T, Zeng M, Zhao X J. Appl. Catal. B, 2015, 174:496.
[39] Liu H H, Li Y Z, Yang Y, Mao M Y, Zeng M, Lan L, Yun L, Zhao X J. J. Mater. Chem. A, 2016, 4:9890.
[40] Zheng Y L, Wang W Z, Jiang D, Zhang L, Li X M, Wang Z. J. Mater. Chem. A, 2016, 4:105.
[41] 李朝晖(Li Z H), 刘平(Liu P), 付贤智(Fu X Z). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26(4):877.
[42] Hou Y D, Wu L, Wang X C, Ding Z X, Li Z H, Fu X Z. J. Catal., 2007, 250:12.
[43] Sun M, Li D Z, Zhang W J, Fu X Z, Shao Y, Li W J, Xiao G C, He Y H. Nanotechnology, 2010, 21(35):355601.
[44] Li Z H, Xie Z P, Zhang Y F, Wu L, Wang X X, Fu X Z. J. Phys. Chem. C, 2007, 111:18348.
[45] Yan T J, Long J L, Chen Y S, Wang X X, Li D Z, Fu X Z. C. R. Chimie., 2008, 11:101.
[46] Xue H, Li Z H, Wu L, Ding Z X, Wang X X, Fu X Z. J. Phys. Chem. C, 2008, 112:5850.
[47] Sun M, Li D Z, Zhang W J, Chen Z X, Huang H J, Li W J, He Y H, Fu X Z. J. Phys. Chem. C, 2009, 113:14916.
[48] Huang R K, Xu X M, Zhu J, Liu W J, Yuan R S, Fu X Z, Zhang Y F, Li Z H. Appl. Catal. B, 2012, 127:205.
[49] Fu X L, Wang X X, Ding Z X, Y.C. Leung D, Zhang Z Z, Long J L, Zhang W X, Li Z H, Fu X Z. Appl. Catal. B, 2009, 91:67.
[50] Fu X L, Huang D W, Qin Y, Li L F, Jiang X L, Chen S F. Appl. Catal. B, 2014, 148/149:532.
[51] Huang D W, Fu X L, Long J L, Jiang X L, Chang L, Meng S G, Chen S F. Chem. Eng. J., 2015, 269:168.
[52] Li H Q, Hong W S, Cui Y M, Jia Q F, Fan S H. J. Mol. Catal. A, 2013, 378:164.
[53] Meng S G, Li D Z, Sun M, Li W J, Wang J X, Chen J, Fu X Z, Xiao G C. Catal. Commun., 2011, 12:972.
[54] Sun M, Li D Z, Zheng Y, Zhang W J, Shao Y, Chen Y B, Li W J, Fu X Z. Environ. Sci. Technol., 2009, 43:7877.
[55] Luo Y P, Chen J, Liu J W, Shao Y, Li X F, Li D Z. Appl. Catal. B, 2016, 182:533.
[56] Marchelek M, Bajorowicz B, Mazierski P, Cybula A, Klimczuk T, Winiarski M, Fija?kowsk N, Zaleska A. Catal. Today, 2015, 252:47.
[57] Nath R K, Zain M F M, Kadhum A A H, Kaish A B M A. Constr. Build Mater., 2014, 54:348.
[58] Chen Y B, Li D Z, Chen J, Wang J X, Meng S G, Xian J G, Fu X Z, Shao Y. Appl. Catal. B, 2013, 129:403.
[59] Zhang X N, Huang J H, Ding K N, Hou Y D, Wang X C, Fu X Z. Environ. Sci. Technol., 2009, 43:5947.
[60] Sun M, Li D Z, Zhang W J, Chen Z X, Huang H J, Li W J, He Y H, Fu X Z. J. Solid State Chem., 2012, 190:135.
[61] Li X Y, Zhu Z R, Zhao Q D, Wang L Z. J. Hazard. Mater., 2011, 186:2089.
[62] Zhu Z R, Zhao Q D, Li X Y, Li H, Moses T, Liu S M. Catal. Sci. Technol., 2013, 3:788.
[63] Zhu Z R, Liu F Y, Zhang W. Mater. Res. Bull., 2015, 64:68.
[64] Zhu Z R, Li X Y, Zhao Q D, Li H, Shen Y, Chen G H. Chem. Eng. J., 2010, 165:64.
[65] Ai Z H, Lee S C, Huang Y, Ho W K, Zhang L Z. J. Hazard. Mater., 2010,179:141.
[66] He R A, Cao S W, Zhou P, Yu J G. Chin. J. Catal., 2014, 35:989.
[67] Zou X J, Dong Y Y, Zhang X D, Cui Y B, Ou X X, Qi X H. Appl. Surf. Sci., doi:10.1016/j.apsusc.2016.06.003.
[68] Ai Z H, Huang Y, Lee S C, Zhang L Z. J. Alloys Compd., 2011, 509:2044.
[69] Rifath S, Ray M. B. J. Air Waste Manage. Assoc., 2012, 62(9):1032.
[70] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013, 264:581.
[71] Cheng J, Shi S X, Tang T T, Tian S Q, Yang W J, Zeng D W. J. Alloys Compd., 2015, 643:159.
[72] Chen Y L, Cao X X, Kuang J D, Chen Z, Chen J L, Lin B Z. Catal. Commun., 2010, 12:247.
[73] Guo S, Li X F, Wang H Q, Dong F, Wu Z B. J. Colloid Interface Sci., 2012, 369:373.
[74] 吴大旺(Wu D W), 李硕(Li S), 陈耀强(Chen Y Q), 龚茂初(Gong M C), 张秋林(Zhang Q L),刘康莲(Liu K L), 王玉林(Wang Y L).物理化学学报(Acta Physico-Chimica Sinica), 2010, 26(12):3299.
[75] 李思佳(Li S J), 邹学军(Zou X J), 董玉瑛(Dong Y Y), 李新勇(Li X Y), 杨宝灵(Yang B L). 化工环保(Environmental Protection of Chemical Industry), 2015, 35(2):182.
[76] Chang W S, Li Y C M, Chung T W, Lin Y S, Huang C M. Appl. Catal. A, 2011, 407:224.
[77] 陈亦琳(Chen Y L), 操小鑫(Cao X X), 林碧洲(Lin B Z).无机材料学报(Journal of Inorganic Materials), 2011, 26(5):508.
[78] He Y M, Zhao L H, Wang Y J, Lin H J, Li T T, Wu X T, Wu Y. Chem. Eng. J., 2011, 169:50.
[79] Chen F, Wu T H, Zhou X P. Catal. Commun., 2008, 9:1698.
[80] Luo L, Li Y Z, Hou J T, Yang Y. Appl. Surf. Sci., 2014, 319:332.
[81] Kontelles-carceller O, Muñoz-Batista M J, Fernández-García M, Kubacka A. ACS Appl. Mater., 2016, 8:2617.
[82] Zou X J, Dong Y Y, Li X Y, Zhao Q D, Cui Y B, Lu G. Catal. Commun., 2015, 69:109.
[83] Zou X J, Ran C Q, Dong Y Y, Chen Z B, Dong D P, Hu D X, Li X Y, Cui Y B. RSC Adv., 2016, 6:20664.
[84] Anpo M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson H H, Webber S, Ouellette S. J. Phys. Chem., 1994, 98(22):5744.
[85] Yamashita H, Matsuoka M, Tsuji K, Shioya Y, Anpo M. J. Phys. Chem., 1996, 100(1):397.
[86] Kato Y, Yoshida H, Satsuma A, Hattori T. Micropor. Mesopor. Mater., 2002, 51:223.
[87] Yan G Y, Long J L, Wang X X, Li Z H, Fu X Z. C. R. Chimie., 2008, 11:114.
[88] Yan G Y, Wang X X, Fu X Z, Li D Z. Catal. Today, 2004, 93/95:851.
[89] Blatter F, Sun H, Vasenkov S, Frei H. Catal.Today, 1998, 41(4):297.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[9] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[10] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Tingyi Yan, Guangyao Zhang, Kun Yu, Mengjie Li, Lijun Qu, Xueji Zhang. Smartphone-Based Point-of-Care Testing [J]. Progress in Chemistry, 2022, 34(4): 884-897.