中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1705-1711 DOI: 10.7536/PC160443 Previous Articles   Next Articles

Special Issue: 电化学有机合成; 酶化学

• Review and comments •

Non-Enzymatic Electrochemical Sensors Based on Carbon Nanomaterials for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid

Xing Liwen, Ma Zhanfang*   

  1. Depatment of Chemistry, Capital Normal University, Beijing 100048, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Project of the Construction of Scientific Research Base by the Beijing Municipal Education Commission (No. 009165503200).
PDF ( 1341 ) Cited
Export

EndNote

Ris

BibTeX

The deficiency or maladjustment of ascorbic acid, dopamine, and uric acid in human body may lead to symptoms of many diseases such as cancer, Alzheimer's disease and hyperuricemia. The three species usually coexist in body fluid and possess adjacent redox potentials, thus it is extremely important and challenging to accomplish the simultaneous detection of these species. In recent years, electrochemical sensors for simultaneous detection of ascorbic acid, dopamine, and uric acid, have made a great progress. Especially, carbon nanomaterials draw considerable attentions owing to their intrinsic properties such as low cost, excellent conductivity, chemical stability, large specific surface area etc. This review mainly focuses on designing non-enzymatic electrochemical sensors based on carbon nanomaterials for simultaneous detection of ascorbic acid, dopamine, and uric acid in recent years. Additionally, the perspective of future development of this type of electrochemical sensors is discussed.

Contents
1 Introduction
2 Carbon nanomaterials-based non-enzymatic electrochemical sensors for simultaneous detection of ascorbic acid, dopamine, and uric acid
2.1 One-dimensional carbon nanomaterials
2.2 Two-dimensional carbon nanomaterials
2.3 Zero-dimensional carbon nanomaterials
2.4 Three-dimensional carbon nanomaterials
3 Conclusion

CLC Number: 

[1] Block W D, Geib N C. J. Biol. Chem., 1947, 168:747.
[2] Tiwari J N, Vij V, Kemp C, Kim K S. ACS Nano, 2016, 10:46.
[3] Zhang W, Zhu S Y, Luque R, Han S, Hu L Z, Xu G B. Chem. Soc. Rev., 2016, 45:715.
[4] Chen X M, Wu G H, Cai Z X, Oyama M, Chen X. Microchim. Acta, 2014, 181:689.
[5] Fennell J F, Liu S F, Azzarelli J M, Weis J G, Rochat S, Mirica K A, Swager T M. Angew. Chem. Int. Ed., 2016, 55:1266.
[6] Ganesh H V, Chow A M, Kerman K. TrAC-Trend Anal. Chem., 2016, 79:363.
[7] Adams R N. Anal. Chem., 1958, 30:1576.
[8] Wang Y, Shao Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4:1790.
[9] Lin Y, Ren J, Qu X. Acc. Chem. Res., 2014, 47:1097.
[10] Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. Angew. Chem. Int. Ed., 2015, 54:7176.
[11] Wu K B, Hu S S. Microchim. Acta, 2004, 144:131.
[12] Zhang M, Gong K, Zhang H, Mao L. Biosens. Bioelectron., 2005, 20:1270.
[13] Sun C L, Chang C T, Lee H H, Zhou J, Wang J, Sham T K, Pong W F. ACS Nano, 2011, 5:7788.
[14] Sun C L, Su C H, Wu J J. Biosens. Bioelectron., 2015, 67:327.
[15] Zhang Y, Yuan R, Chai Y, Li W, Zhong X, Zhong H. Biosens. Bioelectron., 2011, 26:3977.
[16] Luo H, Shi Z, Li N, Gu Z, Zhuang Q. Anal. Chem., 2001, 73:915.
[17] Cheng H, Qiu H, Zhu Z, Li M, Shi Z. Electrochim. Acta, 2012, 63:83.
[18] Cheng H, Guan L, Shi Z, Zhu Z, Gu Z, Li M. Electroanalysis, 2013, 25:2041.
[19] Li Y, Du J, Yang J, Liu D, Lu X. Colloids Surf. B, 2012, 97:32.
[20] Huang J, Liu Y, Hou H, You T. Biosens. Bioelectron., 2008, 24:632.
[21] Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y. Biosens. Bioelectron., 2014, 53:220.
[22] Wang Y, Li Y, Tang L, Lu J, Li J. Electrochem. Commun., 2009, 11:889.
[23] Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81:5603.
[24] Sun C L, Lee H H, Yang J M, Wu C C. Biosens. Bioelectron., 2011, 26:3450.
[25] Jiang J, Du X. Nanoscale, 2014, 6:11303.
[26] Chen L X, Zheng J N, Wang A J, Wu L J, Chen J R, Feng J J. Analyst, 2015, 140:3183.
[27] Li S M, Wang Y S, Hsiao S T, Liao W H, Lin C W, Yang S Y, Hu C C. J. Mater. Chem. C, 2015, 3:9444.
[28] Zhang X, Zhang Y C, Ma L X. Sens. Actuators B:Chem., 2016, 227:488.
[29] Xing L W, Ma Z F. Microchim. Acta, 2016, 183:257.
[30] Li S J, He J Z, Zhang M J, Zhang R X, Lv X L, Li S H, Pang H. Electrochim. Acta, 2013, 102:58.
[31] Sheng Z H, Zheng X Q, Xu J Y, Bao W J, Wang F B, Xia X H. Biosens. Bioelectron., 2012, 34:125.
[32] Huang Q, Hu S, Zhang H, Chen J, He Y, Li F, Lin Y. Analyst, 2013, 138:5417.
[33] Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Hao A. Electrochim. Acta, 2014, 130:805.
[34] Huang Q, Zhang H, Hu S, Li F, Weng W, Chen J, Bao X. Biosens. Bioelectron., 2014, 52:277.
[35] Zhang X, Ma L X, Zhang Y C. Electrochim. Acta, 2015, 177:118.
[36] Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4:3129.
[37] Yue H Y, Huang S, Chang J, Heo C, Yao F, Adhikari S, Li B. ACS Nano, 2014, 8:1639.
[38] Yue H Y, Zhang H, Huang S, Lin X Y, Gao X, Chang J, Guo E J. Biosens. Bioelectron. 2016, DOI:10.1016/j.bios.2016.01.078.
[39] Roy P K, Ganguly A, Yang W H, Wu C T, Hwang J S, Tai Y, Chattopadhyay S. Biosens. Bioelectron., 2015, 70:137.
[40] Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J. Chem. Commun., 2014, 50:11135.
[41] Gai P, Zhang H, Zhang Y, Liu W, Zhu G, Zhang X, Chen J. J. Mater. Chem. B, 2013, 1:2742.
[42] Liang C, Li Z, Dai S. Angew. Chem. Int. Ed., 2008, 47:3696.
[43] Gao W, Feng X, Zhang T, Huang H, Li J, Song W. ACS Appl. Mater. Interfaces, 2014, 6:19109.
[1] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[2] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[3] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[4] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[5] Xuguang Li, Tingting Du, Jin Liu, Xinlei Liu, Pengkun Ma, Yu Qi, Wei Chen*. Environmental Transformation of Engineered Carbon Nanomaterials and Its Implications [J]. Progress in Chemistry, 2017, 29(9): 1021-1029.
[6] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[7] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[8] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[9] Feng Xiaomiao, Li Ruimei, Yang Xiaoyan, Hou Wenhua. Application of Novel Carbon Nanomaterials to Electrochemistry [J]. Progress in Chemistry, 2012, 24(11): 2158-2166.
[10] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[11] Wang Chunlei Ma Ding Bao Xinhe. Carbon Nanomaterials and Their Heterogeneous Catalytic Application [J]. Progress in Chemistry, 2009, 21(09): 1705-1721.
[12] . Photochemistry Degradation of Organic Pollutants Polybrominated Diphenyl Ether Congeners and Cyanuric Acid [J]. Progress in Chemistry, 2009, 21(0203): 400-405.