中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1712-1720 DOI: 10.7536/PC160442 Previous Articles   

Special Issue: 酶化学

• Review and comments •

Design and Discovery of Sialyltransferase Inhibitors

Guo Jian1,2, He Yun1*, Ye Xin-Shan2*   

  1. 1. School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chonqing University, Chongqing 401331, China;
    2. State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21072014).
PDF ( 1678 ) Cited
Export

EndNote

Ris

BibTeX

Sialylation at the non-reducing end of glycoconjugates is involved in lots of important physiological and pathological processes. Especially cancer cells express high density of sialic acids known as hypersialylation that contributes to cancer cell progression and metastasis. Sialyltransferase is the glycosyltransferase in charge of sialylation of glycoconjugates. Effective sialyltransferase inhibitors could be not only of medicinal interests, especially in the therapy of cancer diseases, but also biological probes for studying fuctions of sialylation in glycobiology. Here we review recent progress of design and discovery of sialyltransferase inhibitors. The major content is about the design of different types of inhibitors and their structure-activity relationship. The current challenges and development trends are also proposed.

Contents
1 Introduction
2 Relationship between sialic acids and cancers
3 Design and discovery of sialyltransferase inhibitors
3.1 Donor-analog inhibitors
3.2 Acceptor-analog inhibitors
3.3 Bisubstrate-analog inhibitors
3.4 Transition-state-analog of the sialyl donor inhibitors
3.5 Other types of inhibitors
4 Conclusion

CLC Number: 

[1] Angata T, Varki A. Chem. Rev., 2002, 102:439.
[2] Chen X, Varki A. ACS Chem. Biol., 2010, 5:163.
[3] Büll C, Stoel M A, den Brok M H, Adema G J. Cancer Res., 2014, 74:3199.
[4] Crocker P R, Paulson J C, Varki A, Nat. Rev. Immunol., 2007, 7:255.
[5] 张嘉宁(Zhang J J), 汪淑晶(Wang S J). 生命科学(Chin. Bull. Life Sci.), 2011, 23:678.
[6] Datta A K. Currt. Drug Targets, 2009, 10:483.
[7] Harduin-Lepers A. Glycobiol. Insights, 2010, 2:29.
[8] Horenstein B A, Bruner M. J. Am. Chem. Soc., 1996, 118:10371.
[9] Horenstein B A. J. Am. Chem. Soc.,1997, 119:1101.
[10] Horenstein B A, Bruner M. J. Am. Chem. Soc., 1998, 120:1357.
[11] Rao F V, Rich J R, Rakic B, Buddai S, Schwartz M F, Johnson K, Bowe C, Wakarchuk W W, DeFrees S, Withers S G, Strynadka N C J. Nat. Struct. Mol. Biol., 2009, 16:1186.
[12] Kuhn B, Benz J, Greif M, Engel A M, Sobek H, Rudolph M G. Acta Crystallogr., Sect. D:Biol. Crystallogr., 2013, 69:1826.
[13] Volkers G, Worrall L J, Kwan D H, Yu C, Baumann L, Lameignere E, Wasney G A, Scott N E, Wakarchuk W, Foster L J, Withers S G, Strynadka N C J. Nat. Struct. Mol. Biol., 2015, 22:627.
[14] Yogeeswaran G, Salk P L. Science, 1981, 212:1514.
[15] Schultz M J, Swindall A F, Bellis S L. Cancer Metastasis Rev., 2012, 31:501.
[16] Christian B, Stoel M A, Brok M H D, Adema G J. Cancer Res., 2014, 74:3199.
[17] Irina H, Lubor B. Front. Oncol., 2014, 4:28.
[18] Bos P D, Zhang X H-F, Cristina N, Su W, Gomis R R, Nguyen D X, Minn A J, Vijver M J V D, Gerald W L, Foekens J A. Nature, 2009, 459:1005.
[19] Büll C, den Brok M H, Adema G J. Biochim. Biophys. Acta, Rev. Cancer, 2014, 1846:238.
[20] Amano M, Eriksson H, Manning J C, Detjen K M, André S, Nishimura S I, Lehtiö J, Gabius H J. FEBS J., 2012, 279:4062.
[21] Lu D Y, Lu T R, Wu H Y. Sci. Pharm., 2012, 80:497.
[22] Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson D A, Antonopoulos A, Fearns A, Jamal-Hanjani M, Sims D, Fenwick K, Mitsopoulos C, Gao Q, Orr N, Zvelebil M, Haslam S M, Dell A, Yarwood H, Lord C J, Ashworth A. Cancer Discov., 2014, 4:304.
[23] Wolfenden R. Enzyme Mechanisms. London:The Royal Society of Chemistry, 1987. 97.
[24] Wang X F, Zhang L H, Ye X S. Med. Res. Rev., 2003, 23:32.
[25] Amann F, Schaub C, Müller B, Schmidt R R. Chem.-Eur. J., 1998, 4:1106.
[26] Whalen L J, McEvoy K A, Halcomb R L. Bioorg. Med. Chem. Lett., 2003, 13:301.
[27] Schaub C, Müller B, Schmidt R. Eur. J. Org. Chem., 2000, 1745.
[28] Schaub C, Muller B, Schmidt R R. Glycoconjugate J., 1998, 15:345.
[29] Imamura M, Hashimoto H. Tetrahedron Lett., 1996, 37:1451.
[30] Izumi M, Wada K, Yuasa H, Hashimoto H. J. Org. Chem., 2005, 70:8817.
[31] Imamura M, Hashimoto H. Chem. Lett., 1996, 25:1087.
[32] Cohen S B, Halcomb R L. J. Org. Chem., 2000, 65:6145.
[33] Chang K, Tao Y S, Li W. Synlett, 2004, 37.
[34] Kumar R, Nasi R, Bhasin M, Huan Khieu N, Hsieh M, Gilbert M, Jarrell H. Zou W, Jennings H J. Carbohyd. Res., 2013, 378:45.
[35] Tanaka T, Ozawa M, Miura T, Inazu, T, Tsuji S, Kajimoto T. Synlett, 2002, 1487.
[36] Burkart D M, Vincent P S, Wong C. Chem. Commun., 1999, 1525.
[37] Burkart M D, Vincent S P, Düffels A, Murray B W, Ley S V, Wong C. Bioorg. Med. Chem., 2000, 8:1937.
[38] Rillahan C D, Antonopoulos A, Lefort C T, Sonon R, Azadi P, Ley K, Dell A, S M Haslam, Paulson J C. Nat. Chem. Biol., 2012, 8:661.
[39] Macauley M S, Arlian B M, Rillahan C D, Pang P C, Bortell N, Marcondes M C G, Haslam S M, Dell A, Paulson J C. J. Biol. Chem., 2014, 289:35149.
[40] Büll C, Boltje T J, van Dinther E A, Peters T, de Graaf A M, Leusen J H, Kreutz M, Figdor C G, den Brok M H, Adema G J. ACS Nano, 2015, 9:733.
[41] Hosoguchi K, Maeda T, Furukawa J, Shinohara Y, Hinou H, Sekiguchi M, Togame H, Takemoto H, Kondo H, Nishimura S. J. Med. Chem., 2010, 53:5607.
[42] Kajihara Y, Kodama H, Wakabayashi T, Sato K, Hashimoto H. Carbohydr. Res., 1993, 247:179.
[43] Okazaki K, Nishigaki S, Ishizuka F, Kajihara Y, Ogawa S. Org. Biomol. Chem., 2003, 1:2229.
[44] Mammen M, Choi S K, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37:2754.
[45] Hinou H, Sun X L, Ito Y. Tetrohedron Lett., 2002, 43:9147.
[46] Hinou H, Sun X L, Ito Y S. J. Org. Chem., 2003, 68:5602.
[47] von Itzstein M, Wu W, Kok G B, Pegg M S, Dyason, J C, Jin B, Phan T V, Smythe M L, White H F, Oliver S W, Colman P M, Varghese J N, Ryan D M, Woods J M, Bethell R C, Hotham V J, Cameron J M, Penn C R. Nature, 1993, 363:418.
[48] Kim C U, Lew W, Williams M A, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen M S, Mendel D B, Tai C Y, Laver W G, Stevens R C. J. Am. Chem. Soc., 1997, 119:681.
[49] Muler B, Schaub C, Schmidt R R. Angew. Chem. Int. Ed., 1998, 37:2893.
[50] Skropeta D, Schwörer R, Haag T, Schmidt R R. Glycoconjugate J., 2004, 21:205.
[51] Schworer R. Doctoral Dissertation of Universitat Konstanz, 2003.
[52] Haag T. Diploma Thesis of Universitat Konstanz, 2000.
[53] Schwörer R, Schmidt R R. J. Am. Chem. Soc., 2002, 124:1632.
[54] Schröder P N, Giannis A. Angew. Chem. Int. Ed., 1999, 38:1379.
[55] Skropeta D, Schworer R, Schmidt R R. Bioorg. Med. Chem. Lett., 2003, 13:3351
[56] Mathew B, Schmidt R R. Carbohyd. Res., 2007, 342:558.
[57] Sun H, Yang J, Amaral K E, Horenstein B A. Tetrahedron Lett., 2001, 42:2451.
[58] Li W, Niu Y, Xiong D C, Cao X, Ye X S. J. Med. Chem., 2015, 58:7972.
[59] Harder P G, Jamieson J C. Glycobiology 1997, 7:791.
[60] Wu C Y, Hsu C C, Chen S T, Tsai Y C. Biochem. Bioph. Res. Commun., 2001, 284:466.
[61] Hidari K I P J, Oyama K, Ito G, Nakayama M, Inai M, Goto S, Kanai Y, Watanabe K, Yoshida K, Furuta T, Kan T, Suzuki T. Biochem. Bioph. Res. Commun., 2009, 382:609.
[62] Rillahan C D, Brown S J, Register A C, Rosen H, Paulson J C. Angew. Chem. Int. Ed., 2011, 50:12534.
[1] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[2] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[3] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[4] Yixian Li, Yuemei Jia, Chuyi Yu. Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars [J]. Progress in Chemistry, 2018, 30(5): 586-600.
[5] Tianzhi Dai, Dequn Sun. Research of Anti-TB Active Compounds [J]. Progress in Chemistry, 2018, 30(11): 1784-1802.
[6] Xiang Li, Jiayuan Shi, Shuang Qiu, Mingfang Wang, Changlin Liu*. SOD1 Inhibition Regulates the ROS Signaling Transduction [J]. Progress in Chemistry, 2018, 30(10): 1475-1486.
[7] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.
[8] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[9] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[10] Zheng Wei, Xie Qiong, Chen Liangkang, Chen Jianxing, Qiu Zhuibai. Dual Binding Site Acetylcholinesterase Inhibitors [J]. Progress in Chemistry, 2013, 25(11): 1973-1980.
[11] Barbara K. Dunn. Phase 3 Trials in Breast Cancer Prevention:Focus on Estrogen-Targeting Agents, Selective Estrogen Receptor Modulators and Aromatase Inhibitors [J]. Progress in Chemistry, 2013, 25(09): 1429-1449.
[12] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.
[13] Du Kejie, Wang Yi, Liang Jiewen, Ji Liangnian, Chao Hui*. DNA Topoisomerase Inhibitors [J]. Progress in Chemistry, 2013, 25(04): 545-554.
[14] Wang Haibo, Zhao Meng, Ji Liangnian, Mao Zongwan*. Metalloenzyme Mimics with Non-Covalent Interactions [J]. Progress in Chemistry, 2013, 25(04): 577-588.
[15] Pei Fei, He Yufeng, Li Xiaoxiao, Wang Rongmin*, Li Gang, Zhao Tingting. SOD Mimics Based on Macromolecules [J]. Progress in Chemistry, 2013, 25(0203): 340-349.