中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1743-1752 DOI: 10.7536/PC160441 Previous Articles   Next Articles

• Review and comments •

Structure Characterization of Particle Film and Its Role in Stabilizing Emulsion

Huang Xiangfeng, Na Ya, Xiong Yongjiao, Wang Xuhui, Peng Kaiming*   

  1. College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51478325).
PDF ( 1693 ) Cited
Export

EndNote

Ris

BibTeX

Particle film (particulate film or granular film) based emulsions have attracted great attention because they are widely used in oil, paper, food, cosmetics, pharmaceuticals and other fields. This paper summarizes the characteristics of film-forming particles on the oil-water interface such as density, size and wettability, and expounds the adsorption and diffusion of particles on the oil-water interface. The structures of particle film are highlighted, including the distribution and orientation of particles perpendicular to the interface, the arrangement of particles on the oil-water interface and the spatial structures of film. The influencing factors of the state of particles on the oil-water interface as well as the particle film structures are summed up, then the nature of them is analyzed from the aspects of energy and mechanics. The mechanism of particle film stabilizing emulsion is elucidated from the structures of particle film and the interfacial viscoelasticity. The particle film hinders the collision and coalescence between the dispersed droplets, which is the basis of stable emulsions. Meanwhile, strengthened interfacial viscoelasticity makes sure the particle film will not easily collapse during dispersed droplets' movement, collision and flocculation. The mechanism of solid particles stabilizing emulsion as emulsifiers provides a theoretical basis for not only the preparation of stable emulsions but also the demulsification of emulsions, which is of important realistic significance. At last, we propose prospects of future development and possible solutions of the study on the mechanism of particle film stabilizing emulsion.

Contents
1 Introduction
2 The formation of particle film
2.1 The sources of particles
2.2 The characteristics of particles
2.3 The adsorption and diffusion of particles on the oil-water interface
3 The structures of particle film
3.1 Distribution and orientation of particles perpendicular to the interface
3.2 Arrangement of particles on the oil-water interface
3.3 Spatial structures of particle film
4 The mechanism of particle film stabilizing emulsion
4.1 The impact of particle film’s structures on emulsion stability
4.2 The impact of interface viscoelasticity on emulsion stability
5 Conclusion

CLC Number: 

[1] Ramsden W. Proc. R. Soc. London, 1903, 72:156.
[2] Pickering S U. J. Chem. Soc. Trans., 1907, 91:1981.
[3] 杨飞(Yang F), 王君(Wang J), 蓝强(Lan Q), 孙德军(Sun D J), 李传宪(Li C X). 化学进展(Progress in Chemistry), 2009, 21(7/8):1418.
[4] Mahendran V, Philip J. Sens. Actuators B, 2013, 185(8):488.
[5] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327(5961):68.
[6] Shen X T, Bonde J S, Kamra T, Bulow L, Leo J C, Linke D, Ye L. Angew. Chem. Int. Ed., 2014, 53(40):10687.
[7] Chevalier Y, Bolzinger M A. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 439:23.
[8] Lam S, Velikov K P, Velev O D. Curr. Opin. Colloid Interface Sci., 2014, 19(5):490.
[9] Tang J T, Quinlan P J, Tam K C. Soft Matter, 2015, 11(18):3512.
[10] 陈馥(Chen F), 艾加伟(Ai J W), 罗陶涛(Luo T T), 陶怀志(Tao H Z), 陈俊斌(Chen J B). 精细化工(Fine Chemicals), 2014, 31(1):1.
[11] Luu X C, Yu J, Striolo A. Langmuir, 2013, 29(24):7221.
[12] Park B J, Lee B, Yu T. Soft Matter, 2014, 10(48):9675.
[13] Parolini L, Law A D, Maestro A, Buzza D M A, Cicuta P. J. Phys.:Condens. Matter, 2015, 27(19):194119.
[14] Bykov A G, Loglio G, Miller R, Noskov B A. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2015, 485:42.
[15] Powell K C, Chauhan A. Langmuir, 2014, 30(41):12287.
[16] Rayner M, Marku D, Eriksson M, Sjöö M, Dejmek P, Wahlgren M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 458:48.
[17] Liang F X, Shen K, Qu X Z, Zhang C L, Wang Q A, Li J L, Liu J G, Yang Z Z. Angew. Chem. Int. Ed., 2011, 50(10):2379.
[18] Chen Y, Liang F X, Yang H L, Zhang C L, Wang Q, Qu X Z, Li J L, Cai Y L, Qiu D, Yang Z Z. Macromolecules, 2012, 45(3):1460.
[19] Deng R H, Liang F X, Zhou P, Zhang C L, Qu X Z, Wang Q, Li J L, Zhu J T, Yang Z Z. Adv. Mater., 2014, 26(26):4469.
[20] Luu X C, Striolo A. J. Phys. Chem. B, 2014, 118(47):13737.
[21] De Folter J W J, Hutter E M, Castillo S I R, Klop K E, Philipse A P, Kegel W K. Langmuir, 2014, 30(4):955.
[22] Wang F W, Liu H R, Zhang Y, Liu H W, Ge X W, Zhang X Y. J. Polym. Sci. Part A:Polym. Chem., 2014, 52(3):339.
[23] Wang F W, Liu H R, Zhang J D, Zhou X T, Zhang X Y. J. Polym. Sci. Part A:Polym. Chem., 2012, 50(22):4599.
[24] 易成林(Yi C L), 杨逸群(Yang Y Q), 江金强(Jiang J Q), 刘晓亚(Liu X Y), 江明(Jiang M). 化学进展(Progress in Chemistry), 2011, 23(1):65.
[25] Tarimala S, Wu C Y, Dai L L. Langmuir, 2006, 22(18):7458.
[26] Tambe D E, Sharma M M. J. Colloid Interface Sci., 1993, 157(1):244.
[27] Yamanaka K, Nishino S, Naoe K, Imai M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 436:18.
[28] Lee K Y, Blaker J J, Murakami R, Heng J Y Y, Bismarck A. Langmuir, 2014, 30(2):452.
[29] Zhou J, Qiao X Y, Binks B P, Sun K, Bai M W, Li Y L, Liu Y. Langmuir, 2011, 27(7):3308.
[30] French D J, Taylor P, Fowler J, Clegg P S. J. Colloid Interface Sci., 2015, 441:30.
[31] Chen G, Tan P, Chen S, Huang J, Wen W, Xu L. Phys. Rev. Lett., 2013, 110(6):640.
[32] Kaptay G. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2006, 282:387.
[33] Horozov T S, Binks B P, Aveyard R, Clint J H. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2006, 282:377.
[34] Hunter T N, Pugh R J, Franks G V, Jameson G J. Adv. Colloid Interface Sci., 2008, 137(2):57.
[35] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7(1/2):21.
[36] Binks B P, Rodrigues J A. Angew. Chem. Int. Ed., 2005, 44(3):441.
[37] Monteillet H, Workamp M, Appel J, Kleijn J M, Leermakers F A M, Sprakel J. Adv. Mater. Interfaces, 2014, 1(7):1300121.
[38] 黄维安(Huang W A), 蓝强(Lan Q), 张妍(Zhang Y). 化学进展(Progress in Chemistry), 2007, 19(2):212.
[39] Dai L L, Tarimala S, Wu C Y, Guttula S, Wu J. Scanning, 2008, 30(2):87.
[40] Rezvantalab H, Drazer G, Shojaei-Zadeh S. J. Chem. Phys., 2015, 142(1):014701.
[41] Kang K, Hong J S, Dhont J K G. J. Phys. Chem. C, 2014, 118(42):24803.
[42] 杨飞(Yang F). 山东大学博士毕业论文(Doctoral Dissertation of Shandong University), 2007.
[43] Wongkongkatep P, Manopwisedjaroen K, Tiposoth P, Archakunakorn S, Pongtharangkul T, Suphantharika M, Honda K, Hamachi I, Wongkongkatep J. Langmuir, 2012, 28(13):5729.
[44] Paunov V N, Cayre O J, Noble P F, Stoyanov S D, Velikov K P, Golding M. J. Colloid Interface Sci., 2007, 312(2):381.
[45] Snoeyink C, Barman S, Christopher G F. Langmuir, 2015, 31(3):891.
[46] Binks B P, Isa L, Tyowua A T. Langmuir, 2013, 29(16):4923.
[47] Morgan A R, Ballard N, Rochford L A, Nurumbetov G, Skelhon T S, Bon S A F. Soft Matter, 2013, 9(2):487.
[48] Gao H M, Lu Z Y, Liu H, Sun Z Y, An L J. J. Chem. Phys., 2014, 141(13):134907.
[49] Park B J, Lee D. ACS Nano, 2012, 6(1):782.
[50] Ballard N, Bon S A F. J. Colloid Interface Sci., 2015, 448:533.
[51] Tarimala S, Ranabothu S R, Vernetti J P, Dai L L. Langmuir, 2004, 20(13):5171.
[52] Tarimala S, Dai L L. Langmuir, 2004, 20(9):3492.
[53] Park B J, Lee D. Small, 2015, 11(35):4560.
[54] Horozov T S, Binks B P. Angew. Chem. Int. Ed., 2006, 45(5):773.
[55] Petkov P V, Danov K D, Kralchevsky P A. Langmuir, 2014, 30(10):2768.
[56] Vogel N, Retsch M, Fustin C A, del Campo A, Jonas U. Chem. Rev., 2015, 115(13):6265.
[57] Basavaraj M G, Fuller G G, Fransaer J, Vermant J. Langmuir, 2006, 22(15):6605.
[58] Lee M, Lee D, Park B J. Soft Matter, 2015, 11(2):318.
[59] 丁鹏翔(Ding P X), 刘温霞(Liu W X). 纸和造纸(Paper and Paper Making), 2010, 29(4):43.
[60] Geisel K, Henzler K, Guttmann P, Richtering W. Langmuir, 2015, 31(1):83.
[61] Zou Y, Guo J, Yin S W, Wang J M, Yang X Q. J. Agric. Food. Chem., 2015, 63(33):7405.
[62] Vella D, Aussillous P, Mahadevan L. Europhys. Lett., 2004, 68(2):212.
[63] Kassuga T D, Rothstein J P. J. Colloid Interface Sci., 2015, 448:287.
[64] Poulichet V, Garbin V. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(19):5932.
[65] Razavi S, Cao K D, Lin B H, Lee K Y C, Tu R S, Kretzschmar I. Langmuir, 2015, 31(28):7764.
[66] Aranberri I, Binks B P, Clint J H, Fletcher P D I. J. Porous Mater., 2009, 16(4):429.
[67] 陈浩(Chen H), 张晓优(Zhang X Y), 徐樟浩(Xu Z H), 赵杰(Zhao J). 非金属矿(Non-Metallic Mines), 2013, 36(3):13.
[68] Saha A, John V T, Bose A. ACS Appl. Mater. Interfaces, 2015, 7(38):21010.
[69] 谢玉银(Xie Y Y), 侯吉瑞(Hou J R), 张建忠(Zhang J Z), 谢东海(Xie D H), 任飞(Ren F), 张玥(Zhang Y). 油气地质与采收率(Petroleum Geology and Recovery Efficiency), 2014, 21(1):74.
[70] Li Z F, Harbottle D, Pensini E, Ngai T, Richtering W, Xu Z H. Langmuir, 2015, 31(23):6282.
[71] Fan Y R, Simon S, Sjoblom J. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010, 366(1):120.
[72] Whitby C P, Fornasiero D, Ralston J, Liggieri L, Ravera F. J. Phys. Chem. C, 2012, 116(4):3050.
[73] Wang Y Y, Zhang L, Sun T L, Zhao S, Yu J Y. J. Colloid Interface Sci., 2004, 270(1):163.
[74] 侯吉瑞(Hou J R), 谢玉银(Xie Y Y), 赵凤兰(Zhao F L), 谢东海(Xie D H), 马云飞(Ma Y F), 苑玉静(Yuan Y J). 油气地质与采收率(Petroleum Geology and Recovery Efficiency), 2015, 22(1):68.
[75] Tambe D E, Sharma M M. J. Colloid Interface Sci., 1991, 147(1):137.
[76] Kang Z, Yeung A, Foght J M, Gray M R. Colloids Surf. B, 2008, 62(2):273.
[77] 田鹏飞(Tian P F), 刘温霞(Liu W X). 应用化学(Chinese Journal of Applied Chemistry), 2008, 25(11):1271.
[78] Pensini E, Harbottle D, Yang F, Tchoukov P, Li Z, Kailey I, Behles J, Masliyah J, Xu Z. Energy Fuels, 2014, 28(11):6760.
[79] Huang X F, Liu J, Lu L J, Wen Y, Xu J C, Yang D H, Zhou Q. Bioresour. Technol., 2009, 100(3):1358.
[80] Huang X F, Peng K M, Lu L J, Wang R F, Liu J. Environ. Sci. Technol., 2014, 48(5):3056.
[81] Peng K M, Liu J, Lu L J, Yin W, Huang X F. J. Adhes. Sci. Technol., 2016, 30(2):194.
[82] Wen Y, Cheng H, Lu L J, Liu J, Feng Y, Guan W, Zhou Q, Huang X F. Bioresour. Technol., 2010, 101(21):8315.
[83] Frostad J M, Collins M C, Leal L G. Langmuir, 2013, 29(15):4715.
[84] Lin F, He L, Primkulov B, Xu Z. J. Phys. Chem. C, 2014, 118(25):13552.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[11] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[12] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[13] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[14] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[15] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.