中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1753-1761 DOI: 10.7536/PC160433 Previous Articles   Next Articles

• Review and comments •

Removing Water Contaminants Using Zeolitic Imidazolate Frameworks

Fan Gongduan1,2*, Lin Rujing1, Su Zhaoyue1, Xu Renxing1   

  1. 1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China;
    2. Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350108, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Science Foundation for Post-doctoral Scientists of China (No.2014M561856)and the National Natural Science Foundation of China(No.21303020,51308123).
PDF ( 1471 ) Cited
Export

EndNote

Ris

BibTeX

The vigorous increase of the frequency of water pollution has become serious bottlenecks constraining national economy and modern industry development. Therefore, the research on the control and treatment of water contaminants is of great significance and urgency. Zeolitic imidazolate frameworks (ZIFs), as a product of chemical and material science that have been rapidly developing in recent years, have received extensive attention around the world and have been applied to waste water treatment owing to their stable structure, high surface area and excellent performance. Taking the ZIF-8 as the representative, this paper reviews the research and development on the application of ZIFs to remove water contaminants. The performance of the ZIFs in removal of water contaminants as the adsorbent and photocatalyst is introduced systematically, the factors influencing water contaminants removal by ZIFs are summed up. Moreover, it has carried on the forecast to later period's research. The objective of this paper is to provide theoretical reference for the practical application of ZIFs to the treatment of real waste water.

Contents
1 Introduction
2 Effect of ZIFs on the removal of water contaminants
2.1 Removal efficiency of ZIFs as adsorbent for water contaminants
2.2 Removal efficiency of water contaminants by ZIFs used as photocatalyst
3 Factors influencing removal of water contaminants by ZIFs
3.1 Preparation of ZIFs for the removal of water contaminants
3.2 Environmental impact of ZIFs on the removal of water contaminants
4 The mechanism of water contaminants removal by ZIFs
4.1 ZIFs as adsorbent
4.2 ZIFs as photocatalyst
5 Conclusions

CLC Number: 

[1] Shannon M, Bohn P, Elimelech M, Georgiadis J, Marinas B, Mayes A. Nature, 2008, 452(7185):301.
[2] Montgomery M A, Elimelech M. Environmental Science and Technology, 2007, 41(1):16.
[3] Samrani A G E, Lartiges B S, Ras F V. Water Research, 2008, 42(4/5):951.
[4] Marco P, Carlo S, Giacomo C. Resources, Conservation and Recycling, 1999, 27(4):299.
[5] Ku Y, Jung N. Water Research, 2001, 35(1):135.
[6] Alyüz B, Veli S. Journal of Hazardous Materials, 2009, 167(1/3):482.
[7] Huisman J L, Schouten G, Schultz C. Hydrometallurgy, 2006, 83(1/4):106.
[8] Kurniawan T A, Chan G Y S, Lo W, Babel S. Chemical Engineering Journal, 2006, 118(1/2):83.
[9] Da,browski A, Hubicki Z, Podko Ds' cielny P, Robens E. Chemosphere, 2004, 56(2):91.
[10] James S L. Chemical Society Reviews, 2003, 32(5):276.
[11] Khan N A, Hasan Z, Jhung S H. Journal of Hazardous Materials, 2013, s244/245(2):444.
[12] Millange F, Serre C, Férey G. Chemical Communications, 2002, (8):822.
[13] Wang B, Côté A P, Furukawa H, O'Keeffe M, Yaghi O M. Nature, 2008, 543(7192):207.
[14] Barthelet K, Marrot J, Riou D, Ferey G. Angewandte Chemie, 2002, 114(2):291.
[15] Ma S, Zhou H. Journal of the American Chemical Society, 2006, 128(36):11734.
[16] Huang Y, Zhang Y, Chen X, Wu D, Yi Z, Cao R. Chemical Communications, 2014, 50(70):10115.
[17] Ariga K, Ito H, Hill J P, Tsukube H. Chemical Society Reviews, 2012, (41):5800.
[18] Bhattacharjee S, Lee Y, Puthiaraj P, Cho S, Ahn W. Catalysis Surveys from Asia, 2015, 19(4):203.
[19] Zhao M, Ou S, Wu C. Accounts of Chemical Research, 2014, 47(4):1199.
[20] Zhu X, Zheng H, Wei X, Lin Z, Guo L, Qiu B, Chen G. Chemical Communications, 2013, 49(13):1276.
[21] Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Coordination Chemistry Reviews, 2016, 307(Part2):361.
[22] Su C, Dong Y. Journal of Solid State Chemistry, 2015, 223:1.
[23] 任晓倩(Ren X Q),李锐(Li R),宋玉娜(Song Y N),冯霄(Feng X),王博(Wang B). 中国科学:化学(Scientia Sinica Chimica), 2014, 44(10):1521.
[24] Venna S R, Jasinski J B, Carreon M A. Journal of the American Chemical Society, 2010, 132(51):18030.
[25] 吴有根(Wu Y G),么雪梅(Yao X M),赵彦英(Zhao Y Y). 读写算(教育教学研究)(Duyuxie), 2015, (28):88.
[26] Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27):10186.
[27] Moggach S A, Bennett T D, Cheetham A K. Angewandte Chemie (International Edition in English), 2009, 48(38):7087.
[28] 郭方方(Guo F F).北京化工大学硕士论文(Master Dissertation of Beijing University of Chemical Technology).2015.
[29] Kang X, Song Z, Shi Q, Dong J. Asian Journal of Chemistry, 2013, 25(15):8324.
[30] Jung B K, Hasan Z, Jhung S H. Chemical Engineering Journal, 2013, 234(12):99.
[31] Bakhtiari N, Azizian S, Alshehri S M, Torad N L, Malgras V, Yamauchi Y. Microporous and Mesoporous Materials, 2015, 217:173.
[32] Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Journal of the American Chemical Society, 2009, 131(43):15834.
[33] Ge D, Lee H K. Journal of Chromatography A, 2011, 1218(47):8490.
[34] Khan N A, Jung B K, Hasan Z, Jhung S H. J. Hazard. Mater., 2015, 282:194.
[35] Wu Y, Zhou M, Zhang B, Wu B, Li J, Qiao J, Guan X, Li F. Nanoscale, 2014, 6(2):1105.
[36] Wu C, Xiong Z, Li C, Zhang J. RSC Adv., 2015, 5(100):82127.
[37] Lin K A, Chang H. Water, Air, & Soil Pollution, 2015, 226(2):10.
[38] Jiang J, Yang C, Yan X. ACS Applied Materials & Interfaces, 2013, 5(19):9837.
[39] Jian M, Liu B, Zhang G, Liu R, Zhang X. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465(1):67.
[40] Jiang X, Chen H, Liu L, Qiu L, Jiang X. Journal of Alloys and Compounds, 2015, 646:1075.
[41] Hao L, Liu X, Wang J, Wang C, Wu Q, Wang Z. Talanta, 2015, 142:104.
[42] Wang Y, Jin S, Wang Q, Lu G, Jiang J, Zhu D. Journal of Chromatography A, 2013, 1291(1042):27.
[43] Li J, Wu Y, Li Z, Zhang B, Zhu M, Hu X, Zhang Y, Li F. The Journal of Physical Chemistry C, 2014, 118(47):27382.
[44] Da Silva J J D F, Malo D L, Bataglion G A, Eberlin M N, Ronconi C M, Alves J S, de Sá G F. PloS One, 2015, 10(6):e0128436.
[45] He L, Li L, Wang T, Gao H, Li G, Wu X, Su Z, Wang C. Dalton Transactions, 2014, 43(45):16981.
[46] Zhang Y, Li G, Lu H, Lv Q, Sun Z. RSC Adv., 2014, 4:7594.
[47] Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16:4919.
[48] Jiang H, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Journal of the American Chemical Society, 2009, 131(32):11302.
[49] Wee L H, Janssens N, Sree S P, Wiktor C, Gobechiya E, Fischer R A, Kirschhock C E A, Martens J A. Nanoscale, 2014, (6):2056.
[50] Badaeva E, Isborn C, Feng Y, Ochsenbein S, Gamelin D. Journal of Physical Chemistry C, 2009, 113(20):8710.
[51] Yu B, Wang F, Dong W, Hou J, Lu P, Gong J. Materials Letters, 2015, 156:50.
[52] Isimjan T T, Kazemian H, Rohani S, Ray A K. Journal of Materials Chemistry, 2010, 20(45):10241.
[53] Chen L, Peng Y, Wang H, Gu Z, Duan C. Chem.Comm., 2014, 50:8651.
[54] Chandra R, Mukhopadhyay S, Nath M. Materials Letters, 2016, 164:571.
[55] Biswal B P, Shinde D B, Pillai V K, Banerjee R. Nanoscale, 2013, 5(21):10556.
[56] Gao S, Liu W, Shang N, Feng C, Wu Q, Wang Z, Wang C. RSC Adv., 2014, 4(106):61736.
[57] Liu S, Xiang Z, Hu Z, Zheng X, Cao D. Journal of Materials Chemistry, 2011, 21(18):6649.
[58] Liu J X, Li R, Wang Y F, Wang Y W, Zhang X C, Fan C M. J. Alloys Compd., 2017, 693:543.
[59] Bao Q, Lou Y, Xing T, Chen J. Inorganic Chemistry Communications, 2013, 37(6):170.
[60] Shi Q, Chen Z, Song Z, Li J, Dong J. Angewandte Chemie International Edition, 2011, 50(3):672.
[61] Chen B, Zhao X, Putkham A, Hong K, Lobkovsky E B, Hurtado E J, Fletcher A J, Thomas K M. Journal of the American Chemical Society, 2008, 130(20):6411.
[62] Qi Y, Luo F, Che Y, Zheng J. Crystal Growth & Design, 2008, 8(2):606.
[63] Kida K, Okita M, Fujita K, Tanaka S, Miyakeab Y. CrystEngComm, 2013, 15(9):1794.
[64] Tian Y, Zhao Y, Chen Z, Zhang G, Weng L, Zhao D. Chemistry-A European Journal, 2007, 13(15):4146.
[65] Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Chem. Commun. (Camb), 2011, 47(7):2071.
[66] Bustamante E L, Fernández J L, Zamaro J M. Journal of Colloid and Interface Science, 2014, 424(18):37.
[67] Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Chemistry Letters, 2012, 41(10):1337.
[68] 姜交来(Jiang J L),廖俊生(Liao J S). 材料导报A(Materials Review A), 2015, 29(8):52.
[69] Keser Demir N, Topuz B, Yilmaz L, Kalipcilar H. Microporous and Mesoporous Materials, 2014, 198(18):291.
[70] Chen B, Bai F, Zhu Y, Xia Y. Microporous and Mesoporous Materials, 2014, 193(27):7.
[71] Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Chemistry of Materials, 2011, 23(8):2130.
[72] Gross A F, Sherman E, Vajo J J. Dalton Transactions, 2012, 41(18):5458.
[73] Yang T, Chung T. International Journal of Hydrogen Energy, 2013, 38(1):229.
[74] He M, Yao J, Liu Q, Wang K, Chen F, Wang H. Microporous and Mesoporous Materials, 2014, 184(2):55.
[75] Pan Y, Heryadi D, Zhou F, Zhao L, Lestari G, Su H, Lai Z. CrystEngComm, 2011, 13(23):6937.
[76] Ahmed A, Forster M, Jin J, Myers P, Zhang H. ACS Applied Materials & Interfaces, 2015, 7(32):18054.
[77] Yan F, Liu Z, Chen J, Sun X, Li X, Su M, Li B, Di B. RSC Adv., 2014, 4(62):33047.
[78] Wang F, Liu Z, Yang H, Tan Y, Zhang J. Angewandte Chemie, 2011, 50(2):450.
[79] Jing H, Wang C, Zhang Y, Li P W. The Royal Society of Chemistry, 2014, (4):5445.
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[8] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[9] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[10] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[11] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[12] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[13] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[14] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[15] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.