中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1634-1647 DOI: 10.7536/PC160410 Previous Articles   Next Articles

• Review and comments •

Well-Defined Polyolefin Graft Copolymers: Syntheses, Structures, and Properties

Zhang Yongjie1*, Li Huayi2,3, Qu Minjie1, Feng Na1, Yang Wei4, Zhang Chong4   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    3. Beijing National Laboratory for Molecular Sciences(BNLMS), Beijing 100190, China;
    4. State Key Laboratory of Advanced Transmission Technology, Global Energy Inter-connection Research Institute, Beijing 102209, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Open Research Fund from the Beijing National Laboratory for Molecular Sciences (BNLMS).
PDF ( 2225 ) Cited
Export

EndNote

Ris

BibTeX

Serving as an essential strategy to further expand polyolefin (PO) applications into high performance PO-based materials, functionalization of PO, including preparation of PO segmented graft copolymers, has drawn extensive attention for decades from both academia and industry. PO graft copolymers, containing both PO segments (PP, PE, etc.) and functional polymer segments (PS, PMMA, PEG, etc.), could well retain the excellent properties of PO (crystallinity, processablity) while achieving high functional group concentration. Well defined PO graft copolymers, those with controllable structural parameters (mainly graft density and graft length), are often highly desirable since well-defined structure not only renders tunable chemical and physical properties but also helps to better understand the structure-property relationships, which are crucial to exploring the applications of PO graft copolymers. Three general methods are employed to synthesize well defined PO graft copolymers, namely "graft-through", "graft-from", and "graft-onto". Among them, the further two approaches generally involve mechanism transformation between coordination polymerization and other polymerizations (anionic, radical), where reactive polymer "intermediates" are required, either as macrointiator or macroRAFT agent, or macromonomer. The third approach, which is easier to understand, simply links side-groups functionalized PO and end-groups functionalized polymers together via efficient coupling reactions to form graft architectures. From three aspects, i.e., syntheses, structures and properties, this review outlines the advances in well-defined polyolefin graft copolymers, especially highlighting newly developed synthetic methods (visible light-induced grafting, e.g.) and emerging applications (solid polymer electrolyte, e.g.) of graft copolymers derived thereof.

Contents
1 Introduction
2 Graft-through method
2.1 Polyolefin as backbone
2.2 Polyolefin as graft chain
3 Graft-from method
3.1 Borane Approach
3.2 Tolyl Group
3.3 (hydrochlorinated) Vinylphenyl group
3.4 Hydroxyl
3.5 Inimer
3.6 Non-olefin-coordination-polymerization approach
4 Graft-onto method
5 Conclusion

CLC Number: 

[1] Franssen N M, Reek J N, de Bruin B. Chem. Soc. Rev., 2013, 42:5809.
[2] Passaglia E, Coiai S, Cicogna F, Ciardelli F. Polym. Int., 2014, 63:12.
[3] 胡友良(Hu Y L),乔金梁(Qiao J L),吕立新(Lv L X), 聚烯烃功能化及改性:科学与技术(Functionalization and Modification of Polyolefins:Science and Technology). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2006.
[4] Chung T C. Prog. Polym. Sci., 2002, 27:39.
[5] Dong J Y, Hu Y. Coord. Chem. Rev., 2006, 250:47.
[6] 吴昊天(Wu H T), 吕弛(Lv C), 姜涛(Jiang T), 崔崑(Cui K), 马志(Ma Z). 化工进展(Chemical Industry and Engineering Progress), 2015, 34:1699.
[7] Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X. Chem. Soc. Rev., 2011, 40:1282.
[8] Endo K, Senoo K, Takakura Y. Eur. Polym. J., 1999, 35:1413.
[9] Zhao Y, Wang L, Xiao A, Yu H. Prog. Polym. Sci., 2010, 35:1195.
[10] Mohanty A D, Bae C. Advances in Organometallic Chemistry, Elsevier Science Publishing Co Inc, 2015.Vol. 64, 1.
[11] Ma J, Pang D, Huang B. J. Polym. Sci. Part A:Polym. Chem., 1986, 24:2853.
[12] Endo K, Senoo K. Polym. J., 1999, 31:817.
[13] Henschke O, Neubauer A, Arnold M. Macromolecules, 1997, 30:8097.
[14] Arnold M, Knorr J, Köller F, Bornemann S. J. Macromol. Sci. Pure Appl. Chem., 1999, 36:1655.
[15] Matyjaszewski K, Tsarevsky N V. J. Am. Chem. Soc., 2014, 136:6513.
[16] Schulze U, Fónagy T, Komber H, Pompe G, Pionteck J, Iván B. Macromolecules, 2003, 36:4719.
[17] Fónagy T, Schulze U, Komber H, Voigt D, Pionteck J, Iván B. Macromolecules, 2007, 40:1401.
[18] Lahitte J F, Plentz-Meneghetti S, Peruch F, Isel F, Muller R, Lutz P J. Polymer, 2006, 47:1063.
[19] Gall B T, McCahill J, Stephan D W, Mülhaupt R. Macromol. Rapid Commun., 2008, 29:1549.
[20] Ohtaki H, Deplace F, Vo G D, LaPointe A M, Shimizu F, Sugano T, Kramer E J, Fredrickson G H, Coates G W. Macromolecules, 2015, 48:7489.
[21] Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Science, 2006, 312:714.
[22] Ciolino A E, Barrera Galland G, Luján Ferreira M, Villar M A. J. Polym. Sci. Part A:Polym. Chem., 2004, 42:2462.
[23] 张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014, 26:110.
[24] Hong S C, Jia S, Teodorescu M, Kowalewski T, Matyjaszewski K, Gottfried A C, Brookhart M. J. Polym. Sci. Part A:Polym. Chem., 2002, 40:2736.
[25] Kaneyoshi H, Matyjaszewski K. J. Appl. Polym. Sci., 2007, 105:3.
[26] Kaneko H, Kojoh S-i, Kawahara N, Matsuo S, Matsugi T, Kashiwa N. J. Polym. Sci. Part A:Polym. Chem., 2005, 43:5103.
[27] Huang H, Niu H, Dong J Y. J. Polym. Sci. Part A:Polym. Chem., 2011, 49:2734.
[28] Chung T C, Jiang G J. Macromolecules, 1992, 25:4816.
[29] Chung T C, Rhubright D, Jiang G J. Macromolecules, 1993, 26:3467.
[30] Chung T C, Janvikul W, Bernard R, Jiang G J. Macromolecules, 1994, 27:26.
[31] Niu H, Dong J Y. Polym. Int., 2015, 64:1023.
[32] Chung T C, Lu H L, Ding R D. Macromolecules, 1997, 30:1272.
[33] Lu H L, Hong S, Chung T C. J. Polym. Sci. Part A:Polym. Chem., 1999, 37:2795.
[34] Lu H L, Chung T C. J. Polym. Sci. Part A:Polym. Chem., 1999, 37:4176.
[35] Caporaso L, Iudici N, Oliva L. Macromolecules, 2005, 38:4894.
[36] Caporaso L, Iudici N, Oliva L. Macromol. Sym., 2006, 234:42.
[37] Wang L, Wan D, Zhang Z, Liu F, Xing H, Wang Y, Tang T. Macromolecules, 2011, 44:4167.
[38] Li J, Li H, Wu C, Ke Y, Wang D, Li Q, Zhang L, Hu Y. Eur. Polym. J., 2009, 45:2619.
[39] Hwu J M, Chang M J, Lin J C, Cheng H Y, Jiang G J. J. Organomet. Chem., 2005, 690:6300.
[40] Mohajery S, Rahmani S, Entezami A A. Polym. Adv. Technol., 2008, 19:1528.
[41] Dong J Y, Hong H, Chung T C, Wang H C, Datta S. Macromolecules, 2003, 36:6000.
[42] Cao C, Zou J, Dong J Y, Hu Y, Chung T C. J. Polym. Sci. Part A:Polym. Chem., 2005, 43:429.
[43] Cao C, Dong J Y, Hu Y. Chin. Sci. Bull., 2005, 50:1048.
[44] Wang H Y, Guo C Y, Dong J Y. Catal. Commun., 2008, 10:61.
[45] Chung T C, Dong J Y. J. Am. Chem. Soc., 2001, 123:4871.
[46] Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K. Macromolecules, 2004, 37:3651.
[47] Kawahara N, Saito J, Matsuo S, Kaneko H, Matsugi T, Kashiwa N. Polym. Bull., 2010, 64:657.
[48] Wang L, Yang H, Tan H, Yao K, Gong J, Wan D, Qiu J, Tang T. Polymer, 2013, 54:3641.
[49] Zhang G, Wang Y, Xing H, Qiu J, Gong J, Yao K, Tan H, Jiang Z, Tang T. RSC Adv., 2015, 5:27181.
[50] Zhao Y, Gao H, Liang G, Zhu F, Wu Q. Polym. Chem., 2014, 5:962.
[51] Kashiwa N, Matsugi T, Kojoh S-i, Kaneko H, Kawahara N, Matsuo S, Nobori T, Imuta J I. J. Polym. Sci. Part A:Polym. Chem., 2003, 41:3657.
[52] Mu J, Yang F, Li W, Gong D, Liu Z, Jiang F, Chen Z. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:2146.
[53] Hong M, Pan L, Li B X, Li Y S. Polymer, 2010, 51:3636.
[54] Wang X Y, Li Y G, Mu H L, Pan L, Li Y S. Polym. Chem., 2015, 6:1150.
[55] Garcia F G, Pinto McR, Soares B G. Eur. Polym. J., 2002, 38:759.
[56] Wu H, Jiang T, Zhu J, Cui K, Zhao Q, Ma Z. J. Polym. Sci. Part A:Polym. Chem., 2016, 54:516.
[57] Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T, Kashiwa N. Polymer, 2008, 49:4576.
[58] Shin J, Chang A Y, Brownell L V, Racoma I O, Ozawa C H, Chung H Y, Peng S, Bae C. J. Polym. Sci. Part A:Polym. Chem., 2008, 46:3533.
[59] Stehling U M, Malmström E E, Waymouth R M, Hawker C J. Macromolecules, 1998, 31:4396.
[60] Bowden N B, Dankova M, Wiyatno W, Hawker C J, Waymouth R M. Macromolecules, 2002, 35:9246.
[61] Baumert M, Heinemann J, Thomann R, Mülhaupt R. Macromol. Rapid Commun., 2000, 21:271.
[62] Schneider Y, Azoulay J D, Coffin R C, Bazan G C. J. Am. Chem. Soc.,2008, 130:10464.
[63] Schneider Y, Lynd N A, Kramer E J, Bazan G C. Macromolecules, 2009, 42:8763.
[64] Coffin R C, Schneider Y, Kramer E J, Bazan G C. J. Am. Chem. Soc., 2010, 132:13869.
[65] Diallo A K, Michel X, Fouquay S, Michaud G, Simon F, Brusson J M, Carpentier J F, Guillaume S M. Macromolecules, 2015, 48:7453.
[66] Schulz M D, Wagener K B. Macromol. Chem. Phys., 2014, 215:1936.
[67] Jellema E, Jongerius A L, Reek J N H, de Bruin B. Chem. Soc. Rev., 2010, 39:1706.
[68] So L C, Faucher S, Zhu S. Prog. Polym. Sci., 2014, 39:1196.
[69] Xu Y, Thurber C M, Lodge T P, Hillmyer M A. Macromolecules, 2012, 45:9604.
[70] Savoji M T, Xu Y, Thurber C M, Lodge T P, Hillmyer M A. Macromolecules, 2016, 49:432.
[71] Xu G, Wang D, Buchmeiser M R. Macromol. Rapid Commun., 2012, 33:75.
[72] Park E S. J. Appl. Polym. Sci., 2008, 109:3631.
[73] Ciftci M, Batat P, Demirel A L, Xu G, Buchmeiser M, Yagci Y. Macromolecules, 2013, 46:6395.
[74] Ciftci M, Kork S, Xu G, Buchmeiser M R, Yagci Y. Macromolecules, 2015, 48:1658.
[75] Markova D, Opper K L, Wagner M, Klapper M, Wagener K B, Mullen K. Polym. Chem., 2013, 4:1351.
[76] Moad G. Prog. Polym. Sci., 1999, 24:81.
[77] Robin J J, Boyer C, Boutevin B, Loubat C. Polymer, 2008, 49:4519.
[78] Lv Y, Ma Z, Hu Y, Xu G X, Chung T C. Chin. Sci. Bull., 2003, 48:523.
[79] Mohajery S, Moghadam P N, Rahmani S, Entezami A A. Polym. Adv. Technol., 2010, 21:65.
[80] Kim H K, Zhang M, Yuan X, Lvov S N, Chung T C. Macromolecules, 2012, 45:2460.
[81] Balci M, Alli A, Hazer B, Guven O, Cavicchi K, Cakmak M. Polym. Bull., 2010, 64:691.
[82] Kawahara N, Saito J, Matsuo S, Kaneko H, Matsugi T, Kojoh S-i, Kashiwa N. Polym. Bull., 2007, 59:177.
[83] Wang X., Long Y, Wang Y, Li Y. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:3421.
[84] Wang X, Wang Y, Shi X, Liu J, Chen C, Li Y. Macromolecules, 2014, 47:552
[85] Ciolino A E, Pieroni O I, Vuano B M, Villar M A, Vallés E M. J. Polym. Sci. Part A:Polym. Chem., 2004, 42:2920.
[1] Yongjie Zhang, Mingshuai Fan, Xiaopei Li, Huayi Li, Shuwei Wang, Wenqin Zhu. Silicon-Containing Functionalized Polyolefin: Synthesis and Application [J]. Progress in Chemistry, 2020, 32(1): 84-92.
[2] Xinda Yang, Qin Jiang, Pengfei Shi*. Two-Photon Absorptive Multinuclear Complexes [J]. Progress in Chemistry, 2018, 30(8): 1172-1185.
[3] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[4] Zhang Yongjie, Li Huayi, Dong Jin-Yong, Hu Youliang. Polyolefin Covalently Grafted Nanomaterials and Polyolefin Nanocomposites Derived Thereof [J]. Progress in Chemistry, 2015, 27(1): 47-58.
[5] Tong Minman, Zhao Xudong, Xie Liting, Liu Dahuan, Yang Qingyuan, Zhong Chongli. Treatment of Waste Water Using Metal-Organic Frameworks [J]. Progress in Chemistry, 2012, (9): 1646-1655.
[6] Zhao Yongsheng, Zhang Xiangping, Zhao Jihong, Zhang Hongzhong, Kang Xuejing, Dong Feng. Research of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2012, 24(07): 1236-1244.
[7] Zhang Suojiang Yao Xiaoqian Liu Xiaomin. Structure-Property Relationships and Applications of Ionic Liquids [J]. Progress in Chemistry, 2009, 21(11): 2465-2473.
[8] Zheng Yansheng Mo Qian Liu Zhaoming. The Studies of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2009, 21(09): 1772-1781.
[9]

Fang Lei|Huang Jun|Yu Gang**

. Photochemical Degradation of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2008, 20(0708): 1180-1186.
[10] Niu Junfeng,Yu Gang**,Liu Xitao. Advances in Photolysis of Persistent Organic Pollutants in Water [J]. Progress in Chemistry, 2005, 17(05): 938-948.