中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 1070-1075 DOI: 10.7536/PC160403 Previous Articles   Next Articles

• Review and comments •

ⅣB-Metal Complex Catalysts toward Olefin Polymerization and Copolymerization

Yuan Shifang1,2*, Niu Chunxia2,3, Wei Xuehong2, Sun Wenhua3*   

  1. 1. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China;
    2. The School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
    3. Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21101101,1362204 and U1362204).
PDF ( 1193 ) Cited
Export

EndNote

Ris

BibTeX

Within large-volume polyolefin materials, the value-adding polyolefins have been commonly produced through the copolymerization of ethylene with α-olefin. The Ⅳ B metal complexes have provided various models of precatalysts toward α-olefin polymerization and copolymerization. Meanwhile those metal complexes have also been used as the intermediates or active species in order to understand the mechanism of olefin copolymerization. Targeting a practicing catalytic system for polyolefin industry, the Ⅳ B metal complexes would meet the demands of highly active catalysis, moreover, the catalytic systems should be remained enough stable at the elevated temperature. To have value-adding materials for higher profits, the catalytic system could be adaptable for polyolefins with various properties through being operated under different parameters; such features have been fitted well to Ⅳ B metal precatalysts, which achieve to produce polyolefins with the molecular weights in the useful range from medium to ultrahigh due to different polymerization conditions as well as functionalized polyolefins through the copolymerization of ethylene with α-olefin containing functional groups. Recent progress of Ⅳ B metal complexes for olefin polymerization and copolymerization has been reviewed herein, focusing on different metal complexes being classified due to groups of their ligands used. Moreover, the correlation between structures of metal complexes and their catalytic activity have been considered along with reaction temperatures.

Contents
1 Introduction
2 Constrained geometry catalysts
3 Imino-amido type catalysts
3.1 Pyridyl-amide catalysts
3.2 Imino-amido catalysts
3.3 Imino-enamido catalysts
3.4 Amidoquinoline catalysts
4 Bridging nitrogenous heterocyclic catalysts
5 Conclusion

CLC Number: 

[1] Smith K, Waters R. Linear Low-Density Polyethylene (LLDPE) Resins (580.1320). In IHC Chemical Economics Handbook; IHS:Englewood, CO, 2014, 12.
[2] Klosin J, Fontaine P P, Figueroa R. Acc. Chem. Res., 2015, 48:2004.
[3] Brintzinger H H, Fischer D, Mülhaupt R, Rieger B, Waymouth, R M. Angew. Chem. Int. Ed., 1995, 34:1143.
[4] Shapiro P J, Bunel E, Schaefer W P, Bercaw J E. Organometallics, 1990, 9:867.
[5] McKnight A L, Waymouth R M. Chem. Rev., 1998, 98:2587.
[6] Okuda J. Chem. Ber., 1990, 123:1649.
[7] Stevens J C, Timmers F J, Wilson D R, Schmidt G F, Nickias P N, Rosen R K, Knight G W, Lai S Y. European Patent Application, EP416815A2, 1991.
[8] Canich J A M. (Exxon Chemical Co.) European Patent Application, EP420436A1, 1991.
[9] Wang W J, Kolodka E, Zhu S, Hamielec A E. J. Polym. Sci. Part A:Polym. Chem., 1999, 37:2949.
[10] He Y, Qiu X, Klosin J, Cong R, Roof G R, Redwine D. Macromolecules, 2014, 47:3782.
[11] Klosin J, Kruper W J, Nickias P N, Roof G R, De Waele P, Abboud K A. Organometallics, 2001, 20:2663.
[12] Klosin J, Kruper W J, Patton J T, Abboud K A J. Organomet. Chem., 2009, 694:2581.
[13] Arriola D J, Bokota M, Campbell R E, Jr, Klosin J, LaPointe R E, Redwine O D, Shankar R B, Timmers F J, Abboud K A. J. Am. Chem. Soc., 2007, 129:7065.
[14] Murray R E, Mawson S, Williams C C, Schreck D J (Univation Technologies, LLC). PCT Int. Appl. WO 037511A2, 2000.
[15] Boussie T R, Diamond G M, Goh C, Hall K A, LaPointe A M, Leclerc M K, Murphy V, Shoemaker J A W, Turner H, Ro sen R K, Stevens J C, Alfano F, Busico V, Cipullo R, Talarico G. Angew. Chem. Int. Ed., 2006, 45:3278.
[16] Domski G J, Lobkovsky E B, Coates G W. Macromolecules, 2007, 40:3510.
[17] Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Science, 2006, 312:714.
[18] Frazier K A, Froese R D, He Y, Klosin J, Theriault C N, Vosejpka P C, Zhou Z, Abboud K A. Organometallics, 2011, 30:3318.
[19] Froese R D J, Hustad P D, Kuhlman R L, Wenzel T T. J. Am. Chem. Soc., 2007, 129:7831.
[20] De Waele P, Jazdzewski B A, Klosin J, Murray R E, Theriault C N, Vosejpka P C, Petersen J L. Organometallics, 2007, 26:3896.
[21] Froese R D J, Jazdzewski B A, Klosin J, Kuhlman R L, Theriault C N, Welsh D M, Abboud K A. Organometallics, 2011, 30:251.
[22] Zhang C, Pan H, Klosin J, Tu S, Jaganathan A, Fontaine P P. Org. Process Res. Dev., 2015, 19:1383.
[23] Kuhlman R L, Klosin J. Macromolecules, 2010, 43:7903.
[24] Figueroa R, Froese R D, He Y, Klosin J, Theriault C N, Abboud K A. Organometallics, 2011, 30:1695.
[25] Fontaine P P, Figueroa R, McCann S D, Mort D, Klosin J. Organometallics, 2013, 32:2963.
[26] Klosin J, Fontaine P P, Figueroa R, McCann S D, Mort D. Organometallics, 2013, 32:6488.
[27] Fontaine P P, Klosin J, McDougal N T. Organometallics, 2012, 31:6244.
[28] Fontaine P P, Ueligger S, Klosin J, Hazari A, Daller J, Hou J. Organometallics, 2015, 34:1354.
[29] Sun W H, Liu S F, Zhang W J, Zeng Y N, Wang D, Liang T L. Organometallics, 2010, 29:732.
[30] Huang W, Zhang W J, Sun W H, Wang L, Redshaw C. Catal. Sci. Technol., 2012, 2:2090.
[31] Yuan S F, Bai S D, Liu D S, Sun W H. Organometallics, 2010, 29:2132.
[32] Yuan S F, Wei X H, Tong H B, Zhang L P, Liu D S, Sun W H. Organometallics, 2010, 29:2085.
[33] Duan X E, Xing Q F, Dong Z M, Chao J B, Bai S D. Chinese J. Polym. Sci., 2016, 34:390.
[34] Tong H B, Li M, Bai S D, Yuan S F, Chao J B, Huang S P, Liu D S. Dalton Trans., 2011, 40:4236.
[35] Bai S D, Guan F, Hu M, Yuan S F, Guo J P, Liu D. S. Dalton Trans., 2011, 40:7686.
[36] Duan X E, Yuan S F, Tong H B, Bai S D, Wei X H, Liu D S. Dalton Trans., 2012, 41:9460.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[6] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[7] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[8] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[9] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[10] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[14] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[15] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.