中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (8): 1251-1264 DOI: 10.7536/PC160332 Previous Articles   Next Articles

• Review and comments •

Cathode Materials of Non-Aqueous Lithium-Oxygen Battery

Yi Luocai1,2, Ci Suqin1*, Sun Chengli2, Wen Zhenhai2   

  1. 1. Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;
    2. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21206068) and the Natural Scienc
PDF ( 544 ) Cited
Export

EndNote

Ris

BibTeX

The lithium-oxygen battery has captured worldwide attention recently because of its energy levels approaching that of gasoline have been postulated. This intense investigation, however, has soon highlighted a series of issues that prevent a rapid development of the lithium-oxygen electrochemical system,such as large overpotential,poor cycling ability,low energy efficiency. Many factor limiting the performances of non-aqueous lithium-oxygen batteries, including the corrosion of the lithium metal, decomposition of the electrolyte,the structure of cathode material and the catalytic activity of catalysts for ORR/OER. This review covers the most recent and significant scientific progress made in the fields relevant to non-aqueous lithium-oxygen batteries, with emphasis on the cathode electrode. After a brief introduction to the different of catalysts and cathode microstructure design, a discussion of the effect of catalysts and cathode design on the performance of lithium-oxygen batteries is presented sequentially, and the final conclusion remarks on future challenges and perspectives.

Contents
1 Introduction
2 Lithium-oxygen batteries overview
2.1 The classification of lithium-oxygen batteries
2.2 The reaction mechanism of lithium-oxygen battery
2.3 Challenges facing the lithium-oxygen battery
3 Cathode materials for non-aqueous lithium-oxygen battery
3.1 Bifunctional catalyst/carbon composite material
3.2 Carbon-free composite materials
3.3 Cathode materials of microstructure design
4 Conclusion and outlook

CLC Number: 

[1] 吴宇平(Wu Y P), 张汉平(Zhang H P), 吴锋(Wu F). 绿色电池材料(Green Battery Material). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2008. 1.
[2] 彭佳悦(Peng J Y), 祖晨曦(Zu C X), 李泓(Li H). 储能科学与技术(Energy Storage Science and Technology), 2013, 2(1):56.
[3] Grande L, Paillard E, Hassoun J, Park J B, Lee Y J, Sun Y K, Passerini S, Scrosati B. Adv. Mater., 2015, 27(5):784.
[4] Choi N S, Chen Z, Freunberger S, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Angew. Chem. Int. Ed., 2012, 51(40):9994.
[5] Wen Z Y, Shen C, Lu Y. Chem. Plus. Chem., 2015, 80(2):270.
[6] 黄征(Huang Z), 池波(Chi B), 蒲健(Pu J), 李箭(Li J). 化学进展(Progress in Chemistry), 2013, 25(2/3), 260.
[7] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010;1(14):2193.
[8] Lu J, Li L, Park J B, Sun Y K, Wu F, Amine K, Chem. Rev., 2014,114(11):5611.
[9] Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N. J. Power Sources, 2010, 195(18):6187.
[10] Wang Y, Zhou H. J. Power Sources, 2010, 195(1):358.
[11] Luo W B, Chou S L, Wang J Z, Zhai Y C, Liu H K. Sci. Rep., 2015, 5:8012.
[12] Shang C, Dong S, Hu P, Guan J, Xiao D, Chen X, Zhang L, Gu L, Cui G, Chen L. Sci. Rep., 2015, 5:8335.
[13] Peng Z Q, Freunberger S A, Chen Yu H, Bruce P G. Science, 2012, 337(6094):563.
[14] Ottakam Thotiyl M. M, Freunberger S. A, Peng, Z, Chen Y, Liu Z, Bruce P G. Nat. Mater., 2013, 12(11):1050.
[15] Jung H G, Hassoun J, Park J B, Sun Y K, Scrosati B. Nat. Chem., 2012, 4(7):579.
[16] Li Q, Xu P, Gao W, Ma S, Zhang G, Cao R G, Cho J, Wang H L, Gang W. Adv. Mater., 2014, 26(9):1378.
[17] Yi J, Liao K, Zhang C F, Zhang T, Li F J, Zhou H S. ACS Appl. Mat. Interfaces, 2015, 7, (20), 10823.
[18] Liu S, Zhu Y, Xie J, Huo Y, Yang H Y, Zhu T, Cao G, Zhao X, Zhang S. Adv. Energy Mater., 2014, 4(9):1301960
[19] Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Kim T, Kim Y H, Robles R O, Lepro X, Baughman R H, Kang K. Energy Environ. Sci., 2013, 6(12):3570.
[20] Sun B, Huang X D, Chen S Q, Munroe P, Wang G X. Nano Lett., 2014, 14(6):3145.
[21] Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon H R. Nano Lett., 2013, 13(10):4679.
[22] Itkis D M., Semenenko D A., Kataev Y E, Belova A I, Neudachina V S, Sirotina A P, Havecker M, Teschner D, Gericke A K, Dudin P, Barinov A, Goodilin E A, Shao-Horn Y, Yashina L V. Nano Lett., 2013, 13(10):4697.
[23] Shui J L, Du F, Xue C M, Li Q, Dai L M. ACS Nano., 2014, 8(3):3015.
[24] Yu Q, Ye S. J. Phys. Chem. C, 2015, 119(22):12236.
[25] Kang S Y, Mo Y, Ong S P, Ceder G. Chem. Mater., 2013, 25(16):3328.
[26] Guo Z Y, Dong X L, Wang Y G, Xia Y Y. Chem. Commun., 2015, 51(4):676.
[27] Hu Yu X, Zhang T R, Cheng F Y, Zhao Q, Han X P, Chen J. Angew. Chem. Int. Ed., 2015, 54(14), 4338.
[28] Zhang Z, Su L W, Yang M, Hu M, Bao J, Wei J P, Zhou Z. Chem. Commun., 2014, 50(7):776.
[29] Zhang Z., Bao J, He C, Chen Y, Wei J, Zhou Z. Adv. Funct. Mater., 2014, 24(43):6826.
[30] Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Bardé F, Novak P, Bruce P G. J. Am. Chem. Soc., 2011, 133(20):8040.
[31] Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G. Angew. Chem. Int. Ed., 2011, 50(37):8609.
[32] Li F, Wu S, Li D, Zhang T, He P, Yamada A, Zhou H. Nat. Commun., 2015, 6, 7843.
[33] Liu T, Leskes M, Yu W, Moore A J, Zhou L, Bayley P M, Kim G, Grey C P. Science, 2015, 350(6260), 530.
[34] Lu J, Lee Y J, Luo X, Lau K C, Asadi M, Wang H H, Brombosz S, Wen J, Zhai D, Chen Z, Miller D J, Jeong Y S, Park J B, Fang Z Z, Kumar B, Salehi-Khojin A, Sun Y K, Curtiss L A, Amine K. Nature, 2016, 529(7586), 377.
[35] Park J, Jun Y S, Lee W R, Gerbec J A, See K A, Stucky G D. Chem. Mater., 2013, 25(19):3779.
[36] Jeong Y S, Park J B, Jung H G, Kim J, Luo X, Lu J, Curtiss L, Amine K, Sun Y K, Scrosati B, Lee Y J. Nano Lett., 2015, 15(7):4261.
[37] Chen S, Liu G, Yadegari H, Wang H, Qiao S Z. J. Mater. Chem. A, 2015, 3(6):2559.
[38] Lu Y C, Gasteiger H A, Crumlin E, McGuire R, Shao-Horn Y. J. Electrochem. Soc., 2010, 157(9):A1016.
[39] Jian Z L, Liu P, Li F J, He P, Guo X W, Chen M W, Zhou H S. Angew. Chem. Int. Ed., 2014, 53(2):442.
[40] Wang X F, Zhu D, Song M, Cai S, Zhang L, Chen Y G. ACS Appl. Mater. Interfaces, 2014, 6(14):11204.
[41] Johnson L, Li C M, Liu Z, Chen Y H, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J M, Bruce P G. Nat. Chem., 2014, 6(12):1091.
[42] Lu Y C, Gasteiger H A, Parent M C, Chiloyan V, Shao-Horn Y. Electrochem. Solid-State Lett., 2010, 13(6):A69.
[43] Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J. ACS Nano, 2013, 7(4):3532.
[44] Liu Y, Wang R, Lyu Y, Li H, Chen L. Energy Environ. Sci., 2014, 7(2):677. DOI:10.1039/C3EE43318H.
[45] Liu S Y, Wang G Q, Tu F F, Xie J, Yang H Y, Zhang S C, Zhu T J, Cao G S, Zhao X B. Nanoscale, 2015, 7(21), 9589.
[46] Luo X Y, Piernavieja-Hermida M, Lu J, Wu T P, Wen J G, Ren Y, Miller D, Fang Z Z, Lei Y, Amine K. Nanotech., 2015, 26(16):164003.
[47] Luo W B. Gao X W. Chou S L. Wang J. Z. Liu H K. Adv. Mater., 2015, 27(43), 6862.
[48] Zahoor A, Christy M, Jeon J S, Lee Y S, Nahm K S. J. Solid State Electro., 2015,19(5), 1501.
[49] Xu J J, Wang Z L, Xu D, Zhang L L, Zhang X B. Nat. Commun., 2013, 4. DOI:10.1038/ncomms3438.
[50] Liao K M, Zhang T, Wang Y Q, Li F J, Jian Z L, Yu H J, Zhou H S. ChemSusChem, 2015, 8(8):1429.
[51] Liu Y, Wang M, Cao L J, Yang M Y, Cheng S H S, Cao C W, Leung K L, Chung C Y, Lu Z G. J. Power Sources, 2015, 286:136.
[52] Cui Z M, Chen H, Zhao M T, Marshall D, Yu Y C, Abruna H, DiSalvo F J. J. Am. Chem. Soc., 2014, 136(29):10206.
[53] Wang D L, Xin H L L, Hovden R, Wang H S, Yu Y C, Muller D A, DiSalvo F J, Abruna H D. Nat. Mater., 2013, 12(1):81.
[54] Ko B K, Kim M K, Kim S H, Lee M A, Shim S E, Baeck S H. J. Mol. Catal. A-Chem., 2013, 379:9.
[55] Choi R, Jung J, Kim G, Song K, Kim Y I, Jung S C, Han Y K, Song H, Kang Y M. Energy Environ. Sci., 2014, 7(4):1362.
[56] Su D W, Kim H S, Kim W S, Wang G X. J. Power Sources, 2013, 244:488.
[57] Kim B G, Kim H J, Back S, Nam K W, Jung Y, Han Y K, Choi J W. Sci. Rep., 2014, 4:4225.
[58] Sevim M, ?ener T, Metin Ö. Int. J. Hydrogen Energ., 2015, 40(34):10876.
[59] Zhang P, Sun D F, He M, Lang J W, Xu S, Yan X B. ChemSusChem, 2015, 8(11):1972.
[60] Mohamed S G, Tsai Y Q, Chen C J, Tsai Y T, Hung T F, Chang W S, Liu R S. ACS Appl. Mater. Interfaces, 2015, 7(22):12038.
[61] Liu Y, Cao L J, Cao C W, Wang M, Leung K L, Zeng S S, Hung T F, Chung C Y, Lu Z G. Chem. Commun., 2014, 50(93):14635.
[62] Kim J G, Kim Y, Noh Y, Kim W B. ChemSusChem, 2015, 8(10):1752.
[63] Cao X C, Wu J, Jin C, Tian J H, Strasser P, Yang R Z. ACS Catal., 2015, DOI:10.1021/acscatal.5b00494.
[64] Li J X, Wen W W, Zou M Z, Guan L H, Huang Z G. J. Alloys Compd., 2015, 639:428.
[65] Kundu D, Black R, Adams B, Harrison K, Zavadil K R, Nazar L F. J. Phys. Chem. Lett., 2015, 6(12):2252.
[66] Kwak W J, Lau K C, Shin C D, Amine K, Curtiss L A, Sun Y K. ACS Nano, 2015, 9(4):4129.
[67] Kundu D, Black R, Berg E J, Nazar L F. Energy Environ. Sci., 2015, 8(4):1292.
[68] Débart A. Paterson A J. Bao J L. Bruce P G. Angew. Chem. Int. Ed., 2008, 47, 4521.
[69] Zheng Y P, Song K, Jung J, Li C, Heo Y U, Park M S, Cho M, Kang Y M, Cho K. Chem. Mater., 2015, 27(9):3243.
[70] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem. Int. Ed., 2008, 47(16):2930.
[71] Oh D, Qi J, Lu Y C, Zhang Y, Shao-Horn Y, Belcher A M. Nat. Commun., 2013, 4:2756.
[72] Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q. Energy Environ. Sci., 2012, 5(12):9765.
[73] Kim K S, Park Y J. Nanoscale Res. Lett., 2012, 7(1):1. DOI:10.1186/1556-276X-7-47.
[74] Cui Y, Wen Z, Sun S, Lu Y, Jin J. Solid State Ionics, 2012, 225:598.
[75] Zhang G, Lou X W. Adv. Mater., 2013, 25(7):976.
[76] Wang H, Yang Y, Liang Y, Zheng G, Li Y, Cui Y, Dai H. Energy Environ. Sci. 2012, 5(7):7931.
[77] Cao Y, Cai S R, Fan S C, Hu W Q, Zheng M S, Dong Q F. Faraday Discuss., 2014, 172:215.
[78] Gao R. Li Z. Zhang X. Zhang J. Hu Z. Liu X. ACS Catal., 2016, 6(1):400.
[79] Chen W F, Wang C H, Sasaki K, Marinkovic N, Xu W, Muckerman J T, Zhu Y, Adzic R R. Energy Environ. Sci., 2013, 6(3):943.
[80] Schweitzer N M, Schaidle J A, Ezekoye O K, Pan X, Linic S, Thompson L T. J. Am. Chem. Soc., 2011, 133(8):2378.
[81] Matsumoto T, Nagashima Y, Yamazaki T, Nakamura J. Electrochem. Solid-State Lett., 2006, 9(3):A160.
[82] Tu F F, X A J, Zhang S C, Cao G S, Zhua T J, Zhao X B. J. Mater. Chem. A, 2015, 3:5714.
[83] Ma Z, Yuan X X, Li L, Ma Z F. Chem. Commun., 2014, 50(94):14855.
[84] Tietz F, Buchkremer H P, Stöver D. J. Electroceram., 2006,17(2/4):701.
[85] Jacobson A J. Chem. Mater., 2009, 22(3):660.
[86] Débart A, Bao J, Armstrong G, Bruce P G. J. Power Sources, 2007, 174(2):1177.
[87] Park H W, Lee D U, Park M G, Ahmed R, Seo M H, Nazar L F, Chen Z W. ChemSusChem, 2015, 8(6):1058.
[88] Yu T, Kim D Y, Zhang H, Xia Y N. Angew. Chem. Int. Ed., 2011, 50(12):2773.
[89] Li P F, Zhang J K, Yu Q L, Qiao J S, Wang Z H, Rooney D, Sun W, Sun K N. Electrochimica Acta, 2015, 165:78.
[90] Xu J J, Xu D, Wang Z L, Wang H G, Zhang L L, Zhang X B. Angew. Chem. Int. Ed., 2013, 52(14):3887.
[91] Xu J J, Wang Z L, Xu D, Meng F Z, Zhang X B. Energy Environ. Sci., 2014, 7(7):2213.
[92] Yuasa M, Matsuyoshi T, Kida T, Shimanoe K. J. Power Sources, 2013, 242:216.
[93] Jin C, Yang Z, Cao X, Lu F, Yang R. Int. J. Hydrogen Energy, 2014, 39(6):2526.
[94] Chen Y H, Freunberger S A, Peng Z Q, Fontaine O, Bruce P G. Nat. Chem., 2013, 5(6):489.
[95] Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepro X, Raquel O R, Baughman R H, Kang K. Angew. Chem. Int. Ed., 2014, 53(15):3926.
[96] Shiga T, Hase Y, Kato Y, Inoue M, Takechi K. Chem. Commun., 2013, 49(80):9152.
[97] Chase G V, Zecevic S, Wesley T W, Uddin J, Sasaki K A, Vincent P G, Bryantsev V, Blanco M, Addison D D. US 20120028137, 2012.
[98] Luo Z K, Liang C S, Wang F, Xu Y H., Chen J, Liu D, Sun H Y, Yang H, Fan X P. Adv. Funct. Mater., 2014, 24(14):2101.
[99] Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S. Nano Lett., 2013, 13(10):4702.
[100] Li F J, Tang D M, Jian Z L, Liu D Q, Golberg D, Yamada A. Adv. Mater., 2014, 26(27):4659.
[101] Lin X J, Shang Y S, Li L Y, Yu A S. ACS Sustainable Chem. Eng., 2015, 3(5):903.
[102] Lin X J, Su J M, Li L Y, Yu A S. Electrochimica Acta., 2015, 168:292.
[1] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[2] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[3] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[4] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[5] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[6] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[7] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[8] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[9] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[10] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.
[11] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.
[12] Dong Quanfeng, Wang Chong, Zheng Mingsen. Research Progress and Prospects of Lithium Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 533-539.
[13] Wang Weikun, Yu Zhongbao, Yuan Keguo, Wang Anbang, Yang Yusheng. Key Materials of High Energy Lithium Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 540-547.
[14] Zhang Lianqi, Xiao Chengwei, Yang Ruijuan. Ordered/Disordered Rocksalt Structured Li1+xM1-xO2 Cathode Materials for Li-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 410-417.
[15] Zhao Lei, Wang Weikun, Wang Anbang, Yu Zhongbao, Chen Shi, Yang Yusheng. Oxocarbon Organic Compound Cathode Materials for Lithium Secondary Batteries [J]. Progress in Chemistry, 2010, 22(12): 2268-2275.