中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 993-1005 DOI: 10.7536/PC160330 Previous Articles   Next Articles

• Review and comments •

Environmental Occurrence and Toxicology of Fluorotelomer Alcohols

Li Zhongmin1, Guo Lianghong1,2*   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. Institute of Environment and Health, Jianghan University, Wuhan 430056, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB14040100) and the National Natural Science Foundation of China (No.21321004,21375143,and 91543203).
PDF ( 1461 ) Cited
Export

EndNote

Ris

BibTeX

Poly- and perfluoroalkyl substances (PFASs) are a family of anthropogenic chemicals widely used in the commercial and industrial applications due to their unique properties of stability, hydrophobicity and lipophobicity. Traditionally, PFASs are produced via two major manufacturing processes: electrochemical fluorination (ECF) and telomerization. Due to their persistence, toxicity and bioaccumulation, ECF-associated chemicals perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (POSF) are placed into the Annex B of the Stockholm Convention (SC) on Persistent Organic Pollutants (POPs) in 2009. The ECF production has also been phased out gradually in the developed countries. However, the production of fluorotelomer alcohols (FTOHs) by telomerization has increased significantly. Recent studies have demonstrated that the biotransformation and abiotic transformation of FTOHs yielded perfluocarboxylic acids (PFCAs), which may be router for the ubiquitous distribution of PFCAs. Besides, some of the FTOHs intermediate metabolites have been demonstrated to be able to covalently bind with various biomolecules and thereby cause serious toxicity, while the final metabolites are showed to cause hepatotoxicity and renal toxicity. Recently, the environmental problems related to FTOHs have become the hotspots in environmental science, toxicology and epidemiology. This paper reviews the research progress on the production status, environmental occurrence, and the toxicities of FTOHs and the related metabolites. Finally, the currently existing problems and trends are discussed.

Contents
1 Introduction
2 Production status and human exposure of FTOHs
2.1 Production status
2.2 Human exposure of PFAAs
3 Environmental occurrence of FTOHs
3.1 Basic properties
3.2 Analytical methods
3.3 Environmental occurrence
4 Toxicological studies
4.1 Biotransformation of FTOHs
4.2 Toxicities of FTOHs and the related metabolites
5 Conclusion and outlook

CLC Number: 

[1] Buck R C, Franklin J, Berger U, Conder J M, Cousins I T, de Voogt P, Jensen A A, Kannan K, Mabury S A, van Leeuwen S P. Integr. Environ. Assess. Manage., 2011, 7:513.
[2] Key B D, Howell R D, Criddle C S. Environ. Sci. Technol., 1997, 31:2445.
[3] Olsen G W, Burris J M, Ehresman D J, Froehlich J W, Seacat A M, Butenhoff J L, Zobel L R. Environ. Health Perspect., 2007, 115:1298.
[4] Moody C A, Martin J W, Kwan W C, Muir D C, Mabury S A. Environ. Sci. Technol., 2002, 36:545.
[5] Moody C A, Kwan W C, Martin J W, Muir D C, Mabury S A. Anal. Chem., 2001, 73:2200.
[6] Shoeib M, Harner T, Wilford B H, Jones K C, Zhu J. Environ. Sci. Technol., 2005, 39:6599.
[7] Higgins C, Field J A, Criddle C S, Luthy R G. Environ. Sci. Technol., 2005, 39:3946.
[8] Young C J, Furdui V I, Franklin J, Koerner R M, Muir D C, Mabury S A. Environ. Sci. Technol., 2007, 41:3455.
[9] Kannan K, Koistinen J, Beckman K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Environ. Sci. Technol., 2001, 35:1593.
[10] Hansen K J, Clemen L A, Ellefson M E, Johnson H O. Environ. Sci. Technol., 2001, 35:766.
[11] Yeung L W Y, So M K, Jiang G, Taniyasu S, Yamashita K, Song M, Wu Y, Li J, Giesy J P, Guruge K S, Lam P K. Environ. Sci. Technol., 2006, 40:715.
[12] Calafat A M, Kuklenyik Z, Caudill S P, Reidy J A, Needham L L. Environ. Sci. Technol., 2006, 40:2128.
[13] Calafat A M, Wong L Y, Kuklenyik Z, Reidy J A, Needham L L. Environ. Health Perspect., 2007, 115:1596.
[14] Haug L S, Thomsen C, Becher G. Environ. Sci. Technol., 2009, 43:2131.
[15] Olsen G W, Church T R, Miller J P, Burris J M, Hansen K J, Lundberg J K, Armitage J B, Herron R M, Medhdizadehkashi Z, Nobiletti J B, O'Neill E M, Mandel J H, Zobel L R. Environ. Health Perspect., 2003, 111:1892.
[16] Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Toxicol. Sci., 2007, 99:366.
[17] Lau C, Butenhoff J L, Rogers J M. Toxicol. Appl. Pharmacol., 2004, 198:231.
[18] Knox S S, Jackson T, Javins B, Frisbee S J, Shankar A, Ducatman A M. J. Clin. Endocrinol. MeTab., 2011, 96:1747.
[19] White S S, Fenton S E, Hines E P. J. Steroid Biochem. Mol. Biol., 2011, 127:16.
[20] Zhang L, Ren X M, Guo L H. Environ. Sci. Technol., 2013, 47:11293.
[21] Mariussen E. Arch. Toxicol., 2012, 86:1349.
[22] Blum A, Balan S A, Scheringer M, Trier X, Goldenman G, Cousins I T, Diamond M, Fletcher T, Higgins C, Lindeman A E, Peaslee G, de Voogt P, Wang Z, Weber R. Environ. Health Perspect., 2015, 123:A107.
[23] Post G B, Cohn P D, Cooper K R. Environ. Res., 2012, 116:93.
[24] Fei C, McLaughlin J K, Tarone R E, Olsen J. Environ. Health Perspect., 2007, 115:1677.
[25] Nelson J W, Hatch E E, Webster T F. Environ. Health Perspect., 2010, 118:197.
[26] Halldorsson T I, Rytter D, Haug L S, Bech B H, Danielsen I, Becher G, Henriksen T B, Olsen S F. Environ. Health Perspect., 2012, 120:668.
[27] Fitz-Simon N, Fletcher T, Luster M I, Steenland K, Calafat A M, Kato K, Armstrong B. Epidemiology, 2013, 24:569.
[28] Gallo V, Leonardi G, Genser B, Lopez-Espinosa M J, Frisbee S J, Karlsson L, Ducatman A M, Fletcher T. Environ. Health Perspect., 2012, 120:655.
[29] Lopez-Espinosa M J, Mondal D, Armstrong B, Bloom M S, Fletcher T. Environ. Health Perspect., 2012, 120:1036.
[30] Lopez-Espinosa M J, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, Ducatman A, Leonardi G. Environ. Sci. Technol., 2011, 45:8160.
[31] Steenland K, Zhao L, Winquist A, Parks C. Environ. Health Perspect., 2013, 121:900.
[32] Barry V, Winquist A, Steenland K. Environ. Health Perspect., 2013, 121:1313.
[33] Wallington T J, Hurley M D, Xia J, Wuebbles D J, Sillman S, Ito A, Penner J E, Ellis D A, Martin J, Mabury S A, Nielsen O J, Andersen M P S. Environ. Sci. Technol., 2006, 40:924.
[34] Martin J W, Mabury S A, O'Brien P J. Chem. Biol. Interact., 2005, 155:165.
[35] Benskin J P, Phillips V, St Louis V L, Martin J W. Environ. Sci. Technol., 2011, 45:7188.
[36] Butt C M, Berger U, Bossi R, Tomy G T. Sci. Total Environ., 2010, 408:2936.
[37] Yeung L W Y, Mabury S A. Environ. Chem., 2016, 13:102.
[38] Rand A A, Mabury S A. Cell Biol. Toxicol., 2012, 28:115.
[39] Rand A A, Mabury S A. Environ. Sci. Technol., 2012, 46:7398.
[40] Rand A A, Mabury S A. Environ. Sci. Technol., 2013, 47:1655.
[41] Rand A A, Mabury S A. Environ. Sci. Technol., 2014, 48:2421.
[42] Martin J W, Chan K, Mabury S A, O'Brien P J. Chem. Biol. Interact., 2009, 177:196.
[43] D'eon J C, Mabury S A. Environ. Sci. Technol., 2011, 45:7974.
[44] Paul A G, Jones K C, Seweetman A J. Environ. Sci. Technol., 2009, 43:386.
[45] Hekster F M, Laane R W, de Voogt P. Environmental and toxicity effects of perfluoroalkylated substances. Springer:New York, 2003.
[46] Xie S, Wang T, Liu S, Jones K C, Sweetman A J, Lu Y. Environ. Int., 2013, 52:1.
[47] Stock N L, Lau F K, Ellis D A, Martin J W, Muir D C G, Mabury S A. Environ. Sci. Technol., 2004, 38:991.
[48] Ellis D A, Martin J W, Mabury S A. Environ. Sci. Technol., 2003, 37:3816.
[49] Ruan T, Sulecki L M, Wolstenholme B W, Jiang G, Wang N, Buck R C. Chemosphere, 2014, 112:34.
[50] D'eon J C, Mabury S A. Environ. Sci. Technol., 2007, 41:4799.
[51] Lee H, D'Eon J C, Mabury S A. Environ. Sci. Technol., 2010, 44:3305.
[52] Dasu K, Liu J, Lee L S. Environ. Sci. Technol., 2012, 46:3831.
[53] Gawor A, Shunthirasingham C, Hayward S J, Lei Y D, Gouin T, Mmereki B T, Masamba W, Ruepert C, Castillo L E, Shoeib M, Lee S C, Harner T, Wania F. Environ Sci Process Impacts, 2014, 16:404.
[54] Fasano W J, Carpenter S C, Gannon S A, Snow T A, Stadler J C, Kennedy G L, Buck R C, Korzeniowski S H, Hinderliter P M, Kemper R A. Toxicol. Sci., 2006, 91:341.
[55] D'Eon J C, Mabury S A. Environ. Health Perspect., 2011, 119:344.
[56] Nilsson H, Karrman A, Westberg H, Rotander A, van Bavel B, Lindstrom G. Environ. Sci. Technol., 2010, 44:2150.
[57] Paul A G, Jones K C, Sweetman A J. Environ. Sci. Technol., 2009, 43:386.
[58] de Silva A O, Mabury S A. Environ. Sci. Technol., 2006, 40:2903.
[59] Ellis D A, Martin J W, de Silva A O, Mabury S A, Hurley M D, Andersen M P S, Wallington T J. Environ. Sci. Technol., 2004, 38:3316.
[60] Beesoon S, Martin J W. Environ. Sci. Technol., 2015, 49:5722.
[61] Yuan G, Peng H, Huang C, Hu J. Environ Sci. Technol, 2016, 50:942.
[62] Ding H, Peng H, Yang M, Hu J. J Chromatogr. A, 2012, 1227:245.
[63] D'eon J C, Crozier P W, Furdui V I, Reiner E J, Libelo E L, Mabury S A. Environ. Sci. Technol., 2009, 43:4589.
[64] Bhhatarai B, Gramatica P. Environ. Sci. Technol., 2011, 45:8120.
[65] Arp H P, Niederer C, Goss K U. Environ. Sci. Technol., 2006, 40:7298.
[66] Stock N L, Ellis D A, Deleebeeck L, Muir D C G, Mabury S A. Environ. Sci. Technol., 2004, 38:1693.
[67] Krusic P J, Marchione A A, Davidson F, Kaiser M A, Kao C P C, Richardson R E, Botelho M, Waterland R L, Buck R C. J. Phys. Chem. A, 2005, 109:6232.
[68] Szostek B, Prickett K B. J. Chromatogr. B, 2004, 813:313.
[69] Szostek B, Prickett K B, Buck R C. Rapid Commun. Mass Spectrom., 2006, 20:2837.
[70] Martin J W, Muir D C, Moody C A, Ellis D A, Kwan W C, Soloman K R, Mabury S A. Anal. Chem., 2002, 74:584.
[71] Giesy J P, Kannan K. Environ. Sci. Technol., 2001, 35:1339.
[72] Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy J P. Environ. Sci. Technol., 2002, 36:3210.
[73] Wang N, Szostek B, Folsom P W, Sulecki L M, Capka V, Buck R C, Berti W R, Gannon J T. Environ. Sci. Technol., 2005, 39:531.
[74] Wang N, Szostek B, Buck R C, Folsom P W, Sulecki L M, Capka V, Berti W R, Gannon J T. Environ. Sci. Technol., 2005, 39:7515.
[75] Wang Z, Xie Z, Möller A, Mi W, Wolschke H, Ebinghaus R. Atmos. Environ., 2014, 95:207.
[76] Zhang S, Szostek B, McCausland P K, Wolstenholme B W, Lu X, Wang N, Buck R C. Environ. Sci. Technol., 2013, 47:4227.
[77] Nabb D L, Szostek B, Himmelstein M W, Mawn M P, Gargas M L, Sweeney L M, Stadler J C, Buck R C, Fasano W J. Toxicol. Sci., 2007, 100:333.
[78] Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. Mar. Pollut. Bull., 2005, 51:658.
[79] Harada K, Nakanishi S, Sasaki K, Furuyama K, Nakayama S, Saito N, Yamakawa K, Koizumi A. Bull Environ. Contam. Toxicol, 2006, 76:306.
[80] Shoeib M, Harner T, G M W, Lee S C. Environ. Sci. Technol., 2011, 45:7999.
[81] Kim S K, Shoeib M, Kim K S, Park J E. Environ. Pollut., 2012, 162:144.
[82] Nilsson H, Karrman A, Rotander A, van Bavel B, Lindstrom G, Westberg H. Environ. Sci. Technol., 2010, 44:7717.
[83] Ericson Jogsten I, Nadal M, van Bavel B, Lindstrom G, Domingo J L. Environ. Int., 2012, 39:172.
[84] Haug L S, Huber S, Schlabach M, Becher G, Thomsen C. Environ. Sci. Technol., 2011, 45:7991.
[85] Yoo H, Washington J W, Ellington A D, Jenkins T M, Neill M P. Environ. Sci. Technol., 2010, 44:8397.
[86] Mahmoud M A, Karrman A, Oono S, Harada K H, Koizumi A. Chemosphere, 2009, 74:467.
[87] Peng H, Hu K, Zhao F, Hu J. J. Chromatogr. A, 2013, 1288:48.
[88] Ahrens L, Shoeib M, Harner T, Lee S C, Guo R, Reiner E J. Environ. Sci. Technol., 2011, 45:8098.
[89] Barber J L, Berger U, Chaemfa C, Huber S, Jahnke A, Temme C, Jones K C. J. Environ. Monit., 2007, 9:530.
[90] Iahnke A, Ahrens L, Ebinghaus R, Temme C. Environ. Sci. Technol., 2007, 41:745.
[91] Li J, Del Vento S, Schuster J, Zhang G, Chakraborty P, Kobara Y, Jones K C. Environ. Sci. Technol., 2011, 45:7241.
[92] Oono S, Harada K H, Mahmoud M A, Inoue K, Koizumi A. Chemosphere, 2008, 73:932.
[93] Shoeib M, Vlahos P, Harner T, Peters A, Graustein M, Narayan J. Atmos. Environ., 2010, 44:2887.
[94] Liu W, Takahashi S, Sakuramachi Y, Harada K H, Koizumi A. Chemosphere, 2013, 90:1672.
[95] Fraser A J, Webster T F, Watkins D J, Nelson J W, Stapleton H M, Calafat A M, Kato K, Shoeib M, Vieira V M, McClean M D. Environ. Sci. Technol., 2012, 46:1209.
[96] Langer V, Dreyer A, Ebinghaus R. Environ. Sci. Technol., 2010, 44:8075.
[97] Fasano W J, Sweeney L M, Mawn M P, Nabb D L, Szostek B, Buck R C, Gargas M L. Chem. Biol. Interact., 2009, 180:281.
[98] D'Eon J C, Mabury S A. Environ. Sci. Technol., 2007, 41:4799.
[99] Kudo N, Iwase Y, Okayachi H, Yamakawa Y, Kawashima Y. Toxicol. Sci., 2005, 86:231.
[100] Henderson W M, Smith M A. Toxicol. Sci., 2007, 95:452.
[101] Butt C M, Muir D C G, Mabury S A. Environ. Sci. Technol., 2010, 44:4973.
[102] Brandsma S H, Smithwick M, Solomon K, Small J, de Boer J, Muir D C. Chemosphere, 2011, 82:253.
[103] Dasu K, Lee L S, Turco R F, Nies L F. Chemosphere, 2013, 91:399.
[104] Butt C M, Muir D C G, Mabury S A. Environ. Toxicol. Chem., 2014, 33:243.
[105] Himmelstein M W, Serex T L, Buck R C, Weinberg J T, Mawn M P, Russell M H. Toxicology, 2012, 291:122.
[106] Vestergren R, Cousins I T. Environ. Sci. Technol., 2009, 43:5565.
[107] Ladics G S, Kennedy G L, O'Connor J, Everds N, Malley L A, Frame S R, Gannon S, Jung R, Roth T, Iwai H, Shin-Ya S. Drug Chem. Toxicol., 2008, 31:189.
[108] Ladics G, Stadler J, Makovec G T, Everds N, Buck R. Drug Chem. Toxicol., 2005, 28:135.
[109] Loveless S E, Finlay C, Everds N E, Frame S R, Gillies P J, O'Connor J C, Powley C R, Kennedy G L. Toxicology, 2006, 220:203.
[110] Green M T, Lee R, Farrar D, Hill J. Toxicol. Lett., 2003, 138:63.
[111] Lash L H, Putt D A, Desai K, Elfarra A A, Sicuri A R, Parker J C. Toxicol. Sci., 1998, 150:49.
[112] Elfarra A A, Anders M W. Biochem. Pharmacol., 1984, 33:3729.
[113] Lash L H, Qian W, Putt D A, Hueni S E, Elfarra A A, Sicuri A R, Parker J C. Toxicol. Appl. Pharmacol., 2002, 179:163.
[114] Mylchreest E, Ladics G, Munley S, Buck R, Stadler J. Drug Chem. Toxicol., 2005, 28:159.
[115] Maras M, Vanparys C, Muylle F, Robbens J, Berger U, Barber J L, Blust R, de Coen W. Environ. Health Perspect., 2006, 114:100.
[116] Ishibashi H, Ishida H, Matsuoka M, Tominaga N, Arizono K. Biol. Pharm. Bull., 2007, 30:1358.
[117] Ishibashi H, Yamauchi R, Matsuoka M, Kim J W, Hirano M, Yamaguchi A, Tominaga N, Arizono K. Chemosphere, 2008, 71:1853.
[118] Liu C, Du Y, Zhou B. Aquat. Toxicol., 2007, 85:267.
[119] Liu C, Yu L, Deng J, Lam P K S, Wu R S S, Zhou B. Aquat. Toxicol., 2009, 93:131.
[120] Liu C, Deng J, Yu L, Ramesh M, Zhou B. Aquat. Toxicol., 2010, 96:70.
[121] Benninghoff A D, Bisson W H, Koch D C, Ehresman D J, Kolluri S K, Williams D E. Toxicol. Sci., 2011, 120:42.
[122] Ren X M, Zhang Y F, Guo L H, Qin Z F, Lv Q Y, Zhang L Y. Arch. Toxicol., 2014, 15:1053.
[123] Zhang L, Ren X M, Wan B, Guo L H. Toxicol. Appl. Pharmacol., 2014, 279:275.
[124] Phillips M M, Dinglasan-Panlilio M J A, Mabury S A, Solomon K R, Sibley P K. Environ. Sci. Technol., 2007, 41:7159.
[125] Phillips M M, Dinglasan-Panlilio M J A, Mabury S A, Solomon K R, Sibley P K. Environ. Toxicol. Chem., 2010, 29:1123.
[126] Rand A A, Rooney J P, Butt C M, Meyer J N, Mabury S A. Chem. Res. Toxicol., 2014, 27:42.
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Chao Zhao, Zongwei Cai. Mass Spectrometry Imaging and Omics for Environmental Toxicology Research [J]. Progress in Chemistry, 2021, 33(4): 503-511.
[3] Wang Baiyun, Wang Xiaoyue, Wang Zhiwen, Chen Tao, Zhao Xueming. Redox Cofactor Metabolic Engineering with Escherichia coli [J]. Progress in Chemistry, 2014, 26(09): 1609-1618.
[4] Li Zhuona, Zhou Qunfang, Liu Jiyan, Shi Yali, Cai Yaqi, Jiang Guibin. Environmental Behavior and Toxicological Effects of Polycyclic Musks [J]. Progress in Chemistry, 2012, 24(04): 606-615.
[5] Li Houjin, Lan Wenjian. Biotransformation of Limonene by Microorganisms [J]. Progress in Chemistry, 2011, 23(11): 2318-2325.
[6] Yin Yongguang, Liu Jingfu, Jiang Guibin. Naturally Occurring Organobromine Compounds in Marine with Environmental Concern [J]. Progress in Chemistry, 2011, 23(01): 254-260.
[7] . The Pollution Status and Research Progress on Organophosphate Esters Flame Retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992.
[8] Wang Dexian, Wang Meixiang. Biotransformations of Three-Membered (Hetero) Cyclic Nitriles and Their Applications in Organic Synthesis [J]. Progress in Chemistry, 2010, 22(07): 1397-1402.
[9] Wang Mengfan Qi Wei Su Rongxin He Zhimin. Advances in Cross-Linked Enzyme Aggregates [J]. Progress in Chemistry, 2010, 22(01): 173-178.
[10] . Perfluorinated Chemicals Related Environmental Problems [J]. Progress in Chemistry, 2009, 21(0203): 369-376.
[11] Ma Da-You. Biocatalytic Asymmetric Synthesis of beta-Hydroxy Acid derivatives [J]. Progress in Chemistry, 2008, 20(11): 1687-1693.
[12] Yaqi Cai**,Yali Shi,Ping Zhang,Shifen Mou,Guibin Jiang. Perchlorate Related Environmental Problems [J]. Progress in Chemistry, 2006, 18(11): 1554-1564.
[13] Aixue Wei,Xuetong Wang,Xiaobai Xu** . The Pollution Research Aspect on Poly-Brominated Diphenyl Esters( PBDEs) Compounds in Environment [J]. Progress in Chemistry, 2006, 18(09): 1227-1233.
[14] Rui Guo1,Yaqi Cai1,Guibin Jiang1*,K S Paul Lam2. Current Research of Perfluorooctane Sulfonate [J]. Progress in Chemistry, 2006, 18(06): 808-813.
[15] Chen Kefu. Environmental Pollution and Its Solvable Method of the Paper Industry in China [J]. Progress in Chemistry, 1998, 10(02): 179-.