中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1363-1386 DOI: 10.7536/PC160325 Previous Articles   Next Articles

• Review and comments •

Contemporary Molecular Targeted Drug in the Context of “Precision Medicine”: An Attempting Discussion of “Precision Drug Design”

Zhan Peng, Wang Xueshun, Liu Xinyong*   

  1. Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was surpported by the Key Program of the National Natural Science Foundation of China(No. 81420108027),the National Natural Science Foundation of China (No. 81573347,81273354),the Young Scholars Program of Shandong University (YSPSDU No. 2016WLJH32),the Major Project of Science and Technology of Shandong Province(No. 2015ZDJS04001), and the Science and Technology Development Project of Shandong Province(No. 2014GSF118012).
PDF ( 663 ) Cited
Export

EndNote

Ris

BibTeX

How to cure serious diseases which do harm to the health of human being such as tumor and virus infection by "precision medicine" is always a difficult problem and a research hotspot in the medical field. With the launch of "precision medicine" project, contemporary drug design has reached the new era, namely, "precise" targeted drug molecular design should be one of the key pillars of precision medicine. The structure-based rational drug design and the targeted drug delivery system are important aspects of the contemporary "precision drug design". Precise noncovalent interactions between ligands and proteins lay the theoretical foundations for structure-based rational drug design. The development of new synthetic methodologies provides a powerful tool for drug precise synthesis, focusing both on the identification of intrinsically novel reactions, as well as the discovery of improved methods for carrying out existing transformations. Chemical biology has a significant role to play in the discovery and validation of new therapeutic targets. Over the past few years, many sensitive and accurate probes based on small organic molecules have demonstrated considerable promise in "precision drug design" as they provide a chemoproteomic means to confirm and quantify target engagement and selectivity of small molecule drug candidates. In the viewpoint of medicinal chemistry, this review highlights recent advances made in contemporary molecular targeted drug design in the context of "precision medicine".

Contents
1 Introduction
2 Structure-based "precision drug design"
2.1 Target-specific drug design
2.2 Isoform-selective drug design
2.3 Drug design strategies to overcome drug resistance
3 Kinetic target-guided dynamic combina-toril chemistry
4 Precise noncovalent interactions between ligands and proteins
5 The development of new synthetic methodologies:late stage functionalization of drug-like molecules
6 Targeted drug precise delivery systems
6.1 Biomarker-based drug precise delivery systems
6.2 Microenvironment-based drug precise delivery systems
6.3 Drug precise delivery systems based on organ-specific enzymes
6.4 Organelle-targeted drug precise delivery systems:mitochondria
6.5 Photodynamic therapy
7 Probes:chemical biology tools for "precision drug design"
7.1 Peptides-based probes
7.2 H2O2 probes
7.3 H2S probes
7.4 Thiol-mediated cleavable fluorescent probles
7.5 Fluoride probes
7.6 Cysteamine two-photon fluorescence probes
7.7 Photo-triggered probes
7.8 MAO-B-specific probes
7.9 Biotin-based probes and diagnostic reagents
8 Conclusions and outlook

CLC Number: 

[1] 何明燕(He M Y), 夏景林(Xia J L), 王向东(Wang X D). 世界临床药物(World Clinical Drugs), 2015, (06):418.
[2] Collins F S, Varmus H. N. Engl. J. Med., 2015, 372(9):793.
[3] 汤立达(Tang L D), 徐为人(Xu W R). 现代药物与临床(Drugs & Clinic), 2015, 4:351.
[4] Poot A J, van Ameijde J, Slijper M, van den Berg A, Hilhorst R, Ruijtenbeek R, Rijkers D T, Liskamp R M. Chembiochem., 2009, 10:2042.
[5] van Wandelen L T, van Ameijde J, Mady A S, Wammes A E, Bode A, Poot A J, Ruijtnbeek R, Liskamp R M. ChemMedChem., 2012, 7:2113.
[6] Volkamer A, Eid S, Turk S, Rippmann F, Fulle S. J. Chem. Inf. Model., 2016, 56:335.
[7] Song Y, Zhan P, Li X, Rai D, de Clercq E, Liu X. Curr. Med. Chem., 2013, 20:815.
[8] Lucas M C, Goldstein D M, Hermann J C, Kuglstatter A, Liu W, Luk K C, Padilla F, Slade M, Villaseñor A G, Wanner J, Xie W, Zhang X, Liao C. J. Med. Chem., 2012, 55:10414.
[9] Melillo B, Liang S Y, Park J, Schon A, Courter J R, LaLonde J M, Wendler D J, Princiotto A M, Seaman M S, Freire E, Sodroski J, Madani N, Hendrickson W A, Smith A B. ACS Med. Chem. Lett., 2016, 7:330.
[10] Zhan P, Itoh Y, Suzuki T, Liu X. J. Med. Chem., 2015, 58:7611.
[11] Folkes A J, Ahmadi K, Alderton W K, Alix S, Baker S J, Box G, Chuckowree I S, Clarke P A, Depledge P, Eccles S A, Friedman L S, Hayes A, Hancox T C, KugendradasA, Lensun L, Moore P, Olivero A G, Pang J, Patel S, Pergl-Wilson G H, Raynaud F I, Robson A, Saghir N, Salphati L, Sohal S, Ultsch M H, Valenti M, Wallweber H J, Wan N C, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil M J, Shuttleworth S J. J. Med. Chem., 2008, 51:5522.
[12] Nacht M, Qiao L, Sheets M P, St Martin T, Labenski M, Mazdiyasni H, Karp R, Zhu Z, Chaturvedi P, Bhavsar D, Niu D, Westlin W, Petter R C, Medikonda A P, Singh J. J. Med. Chem., 2013, 56:712.
[13] Schr der J, Klinger A, Oellien F, Marh fer R J, Duszenko M, Selzer P M. J. Med. Chem., 2013, 56:1478.
[14] Pinson J A, Zheng Z, Miller M S, Chalmers D K, Jennings I G, Thompson P E. ACS Med. Chem. Lett., 2013, 4:206.
[15] Jaime-Figueroa S, de Vicente J, Hermann J, Jahangir A, Jin S, Kuglstatter A, Lynch SM, Menke J, Niu L, Patel V, Shao A, Soth M, Vu M D, Yee C. Bioorg. Med. Chem. Lett., 2013, 23:2522.
[16] Zhu J, Yang Q, Dai D, Huang Q. J. Am. Chem. Soc., 2013, 135:11708.
[17] Shao Y X, Huang M, Cui W, Feng L J, Wu Y, Cai Y, Li Z, Zhu X Liu P, Wan Y, Ke H, Luo H B. J. Med. Chem., 2014, 57:10304.
[18] Yao Y, Chen P, Diao J, Cheng G, Deng L, Anglin J L, Prasad B V, Song Y. J. Am. Chem. Soc., 2011, 133:16746.
[19] Wang X, Huang B, Suzuki T, Liu X, Zhan P. Epigenomics., 2015, 7:1379.
[20] Ogasawara D, Itoh Y, Tsumoto H, Kakizawa T, Mino K, Fukuhara K, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T, Miyata N, Suzuki T. Angew. Chem. Int. Ed. Engl., 2013, 52:8620.
[21] Ranganathan A, Stoddart L A, Hill S J, Carlsson J. J. Med. Chem., 2015, 58:9578.
[22] Wada Y, Shirahashi H, Iwanami T, Ogawa M, Nakano S, Morimoto A, Kasahara K, Tanaka E, Takada Y, Ohashi S, Mori M, Shuto S. J. Med. Chem., 2015, 58:6048.
[23] Yoon H, Kwak Y, Choi S, Cho H, Kim N D, Sim T. J. Med. Chem., 2016, 59:358.
[24] Zhan P, Pannecouque C, de Clercq E, Liu X. J. Med. Chem., 2016, 59:2849.
[25] Zhan P, Chen X, Li D, Fang Z, de Clercq E, Liu X. Med. Res. Rev., 2013, 33:E1.
[26] Zhan P, Liu X, Li Z, Pannecouque C, de Clercq E. Curr. Med. Chem., 2009, 16:3903.
[27] Kang D, Song Y, Chen W, Zhan P, Liu X. Mol. Biosyst., 2014, 10:1998.
[28] Song Y, Fang Z, Zhan P, Liu X. Curr. Med. Chem., 2014, 21:329.
[29] Campiani G, Nacci V, Fiorini I, de Filippis M P, Garofalo A, Greco G, Novellino E, Altamura S, di Renzo L. J. Med. Chem., 1996, 39:26720.
[30] Campiani G, Morelli E, Fabbrini M, Nacci V, Greco G, Novellino E, Ramunno A, Maga G, Spadari S, Caliendo G, Bergamini A, Faggioli E, Uccella I, Bolacchi F, Marini S, Coletta M, Nacca A, Caccia S. J. Med. Chem., 1999, 42:4462.
[31] Fattorusso C, Gemma S, Butini S, Huleatt P, Catalanotti B, Persico M, de Angelis M, Fiorini I, Nacci V, Ramunno A, Rodriquez M, Greco G, Novellino E, Bergamini A, Marini S, Coletta M, Maga G, Spadari S, Campiani G. J. Med. Chem., 2005, 48:7153.
[32] Zanoli S, Gemma S, Butini S, Brindisi M, Joshi B P, Campiani G, Fattorusso C, Persico M, Crespan E, Cancio R, Spadari S, Hübscher U, Maga G. Biochem. Pharmacol., 2008, 76:156.
[33] Butini S, Brindisi M, Cosconati S, Marinelli L, Borrelli G, Coccone S S, Ramunno A, Campiani G, Novellino E, Zanoli S, Samuele A, Giorgi G, Bergamini A, Di Mattia M, Lalli S, Galletti B, Gemma S, Maga G. J. Med. Chem., 2009, 52(4):1224.
[34] Zhan P, Li Z, Liu X, de Clercq E. Mini. Rev. Med. Chem., 2009, 9:1014.
[35] Li W, Li X, De Clercq E, Zhan P, Liu X. Eur. J. Med. Chem., 2015, 102:167.
[36] O'Meara J A, Jakalian A, LaPlante S, Bonneau P R, Coulombe R, Faucher A M, Guse I, Landry S, Racine J, Simoneau B, Thavonekham B, Yoakim C. Bioorg. Med. Chem. Lett., 2007, 17:3362.
[37] Gagnon A, Amad M H, Bonneau P R, Coulombe R, de Roy P L, Doyon L, Duan J, Garneau M, Guse I, Jakalian A, Jolicoeur E, Landry S, Malenfant E, Simoneau B, Yoakim C. Bioorg. Med. Chem. Lett., 2007, 17:4437.
[38] Hopkins A L, Ren J, Tanaka H, Baba M, Okamato M, Stuart D I, Stammers D K. J. Med. Chem., 1999, 42:4500.
[39] Cheng H, Nair S K, Murray B W, Almaden C, Bailey S, Baxi S, Behenna D C, Cho-Schultz S, Dalvie D, Dinh D M, Edwards M P, Feng J L, Ferre R, Gajiwala K S, Hemkens M D, Jackson-Fisher A, Jalaie M, Johnson T O, Kania R S, Kephart S, Lafontaine J A, Lunney E, Liu K K, Liu Z, Matthews J, Nagata A, Niessen S, Ornelas M A, Orr S T, Pairish M, Planken S, Ren S, Richter D T, Ryan K, Sach N W, Shen H, Smeal T, Solowiej J, Sutton S C, Tran K, Tseng E, Vernier W F, Walls M, Wang S, Weinrich S L, Xin S, Xu H, Yin M J, Zhou R, Zientek M, Kath J. J. Med. Chem., 2016, 59:2005.
[40] Engel J, Lategahn J, Rauh D. ACS Med. Chem. Lett., 2015, 7:2.
[41] Hu X, Manetsch R. Chem. Soc. Rev., 2010, 39(4):1316.
[42] Mamidyala S K, Finn M G. Chem. Soc. Rev., 2010, 39:1252.
[43] Sharpless K B, Manetsch R. Expert. Opin. Drug. Discov., 2006, 1:525.
[44] Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K, Otto S. Chem. Rev., 2006, 106:3652.
[45] Wang X, Huang B, Liu X, Zhan P. Drug. Discov. Today., 2016, 21:118.
[46] Hu X, Sun J, Wang H G, Manetsch R. J. Am. Chem. Soc., 2008, 130:13820.
[47] Kulkarni S S, Hu X, Doi K, Wang H G, Manetsch R. ACS Chem. Biol., 2011, 6:724.
[48] Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W. J. Med. Chem., 2009, 52:2854.
[49] Lu Y, Liu Y, Xu Z, Li H, Liu H, Zhu W. Expert. Opin. Drug. Discov., 2012, 7:375.
[50] Lu Y, Wang Y, Xu Z, Yan X, Luo X, Jiang H, Zhu W. J. Phys. Chem. B., 2009, 113:12615.
[51] Lu Y, Wang Y, Zhu W. Phys. Chem. Chem. Phys., 2010, 12:4543.
[52] Ren J, He Y, Chen W, Chen T, Wang G, Wang Z, Xu Z, Luo X, Zhu W, Jiang H, Shen J, Xu Y. J. Med. Chem., 2014, 57:3588.
[53] Cernak T, Dykstra K D, Tyagarajan S, Vachal P, Krska S W. Chem. Soc. Rev., 2016, 45:546.
[54] Toutov A A, Liu W B, Betz K N, Stoltz B M, Grubbs R H. Nat. Protoc., 2015, 10:1897.
[55] Sharma A, Hartwig J F. Nature, 2015, 517:600.
[56] Wu N, Song F, Yan L, Li J, You J. Chemistry, 2014, 20:3408.
[57] Dai H X, Stepan A F, Plummer M S, Zhang Y H, Yu J Q. J. Am. Chem. Soc., 2011, 133:7222.
[58] Yamaguchi A D, Chepiga K M, Yamaguchi J, Itami K, Davies H M. J. Am. Chem. Soc., 2015, 137:644.
[59] He J, Hamann L G, Davies H M, Beckwith R E. Nat. Commun., 2015, 6:5943.
[60] Hong B, Li C, Wang Z, Chen J, Li H, Lei X. J. Am. Chem. Soc., 2015, 137:11946.
[61] Fox J C, Gilligan R E, Pitts A K, Bennett H R, Gaunt M J. Chem. Sci., 2016, 7:2706.
[62] Gayakhe V, Sanghvi Y S, Fairlamb I J, Kapdi A R. Chem. Commun (Camb)., 2015, 51:11944.
[63] Sekizawa H, Amaike K, Itoh Y, Suzuki T, Itami K, Yamaguchi J. ACS Med. Chem.Lett., 2014, 5:582.
[64] Liu Y J, Xu H, Kong W J, Shang M, Dai H X, Yu J Q. Nature, 2014, 515:389.
[65] Zhang F L, Hong K, Li T J, Park H, Yu JQ. Science., 2016, 351:252.
[66] Légaré M A, Courtemanche M A, Rochette É, Fontaine F G. Science., 2015, 349:513.
[67] Miyamura S, Araki M, Suzuki T, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. Engl., 2015, 54:846.
[68] Saadi J, Wennemers H. Nature Chemistry, 2016, 8:276.
[69] Jaracz S, Chen J, Kuznetsova L V, Ojima I. Bioorg. Med. Chem., 2005, 13:5043.
[70] 李安良(Li A L), 李正香(Li Z X). 中国药学杂志(Chinese Pharmaceutical Journal)., 2003, 4:3.
[71] Burkhart D J, Barthel B L, Post G C, Kalet B T, Nafie J W, Shoemaker R K, Koch T H. J. Med. Chem., 2006, 49:7002.
[72] Barthel B L, Zhang Z, Rudnicki D L, Coldren C D, Polinkovsky M, Sun H, Koch G G, Chan D C, Koch T H. J. Med. Chem., 2009, 52:7678.
[73] Barthel B L, Rudnicki D L, Kirby T P, Colvin S M, Burkhart D J, Koch T H. J. Med. Chem., 2012, 55:6595.
[74] Leu Y L, Chen C S, Wu Y J, Chern J W. J. Med. Chem., 2008, 51:1740.
[75] Wei G, Loktionova N A, Pegg A E, Moschel R C. J. Med. Chem., 2005, 48:256.
[76] Brady S F, Pawluczyk J M, Lumma P K, Feng D M, Wai J M, Jones R, de Feo-Jones D, Wong B K, Miller-Stein C, Lin J H, Oliff A, Freidinger R M, Garsky V M. J. Med. Chem., 2002, 45:4706.
[77] de Feo-Jones D, Brady S F, Feng D M, Wong B K, Bolyar T, Haskell K, Kiefer D M, Leander K, McAvoy E, Lumma P, Pawluczyk J M, Wai J, Motzel S L, Keenan K, van Zwieten M, Lin J H, Garsky V M, Freidinger R, Oliff A, Jones R E. Mol. Cancer. Ther., 2002, 1:451.
[78] 梁旭华(Liang X H), 樊君(Fan J), 孙洋(Sun Y), 谭春雷(Fan C L). 中国新药杂志(Chinese Journal of New Drugs), 2012, 22:2647.
[79] 付利强(Fu L Q), 丁实(Ding S), 杨玉社(Yang Y S). 中国药物化学杂志(Chinese Journal of Medicinal Chemistry), 2013, 3:226.
[80] 王中领(Wang Z L), 郭亮(Guo L). 临床放射学杂志(Journal of Clinical Radiology), 2014, 1:143.
[81] Vlahov I R, Santhapuram H K, Kleindl P J, Howard S J, Stanford K M, Leamon C P. Bioorg. Med. Chem. Lett., 2006, 16:5093.
[82] Vlahov I R, Leamon C P. Bioconjug. Chem., 2012, 23:1357.
[83] Vlahov I R, Vite G D, Kleindl P J, Wang Y, Santhapuram H K, You F, Howard S J, Kim S H, Lee F F, Leamon C P. Bioorg. Med. Chem. Lett., 2010, 20:4578.
[84] Leamon C P, Reddy J A, Vlahov I R, Westrick E, Dawson A, Dorton R, Vetzel M, Santhapuram H K, Wang Y. Mol. Pharm., 2007, 4:659.
[85] Liu P, Xu J, Yan D, Zhang P, Zeng F, Li B, Wu S. Chem. Commun (Camb)., 2015, 51:9567.
[86] 杜钢军(Du G J), 时小燕(Shi X Y). 国际药学研究杂志(International Journal of Pharmaceutical Research), 2011, 5:336.
[87] 张慈安(Zhang C A), 魏品康(Wei P K), 李勇进(Li Y J). 肿瘤(Tumor), 2010, 6:550.
[88] Kuang Y, Balakrishnan K, Gandhi V, Peng X. J. Am. Chem. Soc., 2011, 133:19278.
[89] Kim E J, Bhuniya S, Lee H, Kim H M, Cheong C, Maiti S, Hong K S, Kim J S. J. Am. Chem. Soc., 2014, 136:13888.
[90] Park S, Kim E, Kim W Y, Kang C, Kim J S. Chem. Commun (Camb)., 2015, 51:9343.
[91] Erion M D, van Poelje P D, Mackenna D A, Colby T J, Montag A C, Fujitaki J M, Linemeyer D L, Bullough D A. J. Pharmacol. Exp. Ther., 2005, 312:554.
[92] Zhang Q, Milliken P, Kulczynska A, Slawin A M, Gordon A, Kirkby N S, Webb D J, Botting N P, Megson I L. J. Med. Chem., 2013, 56:5321.
[93] Juillerat-Jeanneret L, Flohr A, Schneider M, Walter I, Wyss J C, Kumar R, Golshayan D, Aebi J D. J. Med. Chem., 2015, 58:8097.
[94] Hochd rffer K, Abu Ajaj K, Schäfer-Obodozie C, Kratz F. J. Med. Chem., 2012, 55:7502.
[95] Lehoux D, Ostiguy V, Fadhil I, Laquerre K, Tanaka K S E, Kang T, Lafontaine Y, Houghton T J, Reddy R, Moeck G, Rafai Far A, Parr Jr T R. 18th European Congress of Clinical Microbiology and Infectious Diseases Barcelona, Spain. 2008.
[96] 瞿鼎(Qu D). 第四军医大学硕士论文(Master's Dissertation of Fourth Military Medical University), 2010.
[97] 齐倩倩(Qi Q Q), 贺艺超(He Y C), 肖典(Xiao D), 周辛波(Zhou X B), 赵国明(Zhao G M). 国际药学研究杂志(International Journal of Pharmaceutical Research), 2012, 39:460.
[98] Brewster M E, Anderson W R, Webb A I, Pablo L M, Meinsma D, Moreno D, Derendorf H, Bodor N, Pop E. Antimicrob Agents Chemother., 1997, 41:122.
[99] Berezovskaia IuV, Chudinov M V. Bioorg. Khim., 2005, 31:339.
[100] 潘凌立(Pan L L), 潘达(Pan D), 廖卫兵(Liao W B), 柯超(Ke C), 陈安清(Chen A Q), 郭清莲(Guo Q L). 医学综述(Medical Recapitulate), 2015, 1:37.
[101] 齐雪静(Qi X J), 郑楠楠(Zheng N N), 高亚男(Gao Y N), 吴琳华(Wu L H), 唐景玲(Tang J L). 中国药学杂志(Chinese Pharmaceutical Journal), 2015, 9:741.
[102] 张李巧(Zhang L Q). 中国医院药学杂志(Chinese Journal of Hospital Pharmacy), 2015, 24:2257.
[103] Sharpe M A, Han J, Baskin A M, Baskin D S. ChemMedChem., 2015, 10:621.
[104] Horbert R, Pinchuk B, Davies P, Alessi D, Peifer C. ACS Chem. Biol., 2015, 10:2099.
[105] Jones L H. Future. Med. Chem., 2015, 7:2131.
[106] Chowdhury M A, Moya I A, Bhilocha S, McMillan C C, Vigliarolo B G, Zehbe I, Phenix C P. J. Med. Chem., 2014, 57:6092.
[107] Lo L C, Chu C Y. Chem. Commun (Camb)., 2003, 21:2728.
[108] Carroll V, Michel B W, Blecha J, VanBrocklin H, Keshari K, Wilson D, Chang C J. J. Am. Chem. Soc., 2014, 136:14742.
[109] van de Bittner G C, Dubikovskaya E A, Bertozzi C R, Chang C J. Proc. Natl. Acad. Sci. U S A., 2010, 107(50):21316.
[110] Xu J, Zhang Y, Yu H, Gao X, Shao S. Anal. Chem., 2016, 88:1455.
[111] Narayanaswamy N, Narra S, Nair R R, Saini D K, Kondaiah P, Govindaraju T. Chem. Sci., 2016, 7:2832.
[112] Lin V S, Chen W, Xian M, Chang C J. Chem. Soc. Rev., 2015, 44:4596.
[113] Lee M H, Sessler J L, Kim J S. Acc. Chem. Res., 2015, 48:2935.
[114] Lee M H, Kim J Y, Han J H, Bhuniya S, Sessler J L, Kang C, Kim J S. J. Am.Chem. Soc., 2012, 134:12668.
[115] Bhuniya S, Maiti S, Kim E J, Lee H, Sessler J L, Hong K S, Kim J S. Angew. Chem. Int. Ed. Engl., 2014, 53:4469.
[116] Maiti S, Park N, Han J H, Jeon H M, Lee J H, Bhuniya S, Kang C, Kim J S. J. Am. Chem. Soc., 2013, 135:4567.
[117] Bhuniya S, Lee M H, Jeon H M, Han J H, Lee J H, Park N, Maiti S, Kang C, Kim J S. Chem. Commun (Camb)., 2013, 49:7141.
[118] 姜娜(Jiang N), 樊江莉(Fan J L), 杨洪宝(Yang H B), 彭孝军(Peng X J). 化工学报(Journal of Chemical Industry and Engineering(China)), 2016, 67:176.
[119] Lim C S, Masanta G, Kim H J, Han J H, Kim H M, Cho B R. J. Am. Chem. Soc., 2011, 133:11132.
[120] Yamamoto J, Maeda N, Komiya C, Tanaka T, Denda M, Ebisuno K, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Tetrahedron, 2014, 70:5122.
[121] Gu J A, Mani V, Huang S T. Analyst., 2015, 140:346.
[122] Sarkar A R, Heo C H, Kim E, Lee H W, Singh H, Kim J J, Kang H, Kang C, Kim H M. Chem. Commun (Camb)., 2015, 51:2407.
[123] Jung D, Sato K, Min K, Shigenaga A, Jung J, Otaka A, Kwon Y. Chem. Commun (Camb)., 2015, 51:9670.
[124] Furutani M, Uemura A, Shigenaga A, Komiya C, Otaka A, Matsuura K. Chem. Commun (Camb)., 2015, 51:8020.
[125] Li L, Zhang C W, Chen G Y, Zhu B, Chai C, Xu Q H, Tan E K, Zhu Q, Lim K L, Yao S Q. Nat. Commun., 2014, 5:3276.
[126] Li L, Zhang C W, Ge J, Qian L, Chai B H, Zhu Q, Lee J S, Lim K L, Yao S Q. Angew. Chem. Int. Ed. Engl., 2015, 54:10821.
[127] Vineberg J G, Wang T, Zuniga E S, Ojima I. J. Med. Chem., 2015, 58:2406.
[128] Peck R W. Nat. Rev. Drug. Discov., 2016, 15:145.
[129] 展鹏(Zhan P), 刘新泳(Liu X Y). 中国科技论文(China Sciencepaper), 2015, 10:2140.
[130] Tavassoli A. Future Med. Chem., 2015, 7:2089.
[131] 张艳(Zhang Y), 陈鹏(Chen P), 姚祝军(Yao Z J). 科学通报(Chinese Science Bulletin), 2013, 58:2872.
[132] Xie X S. JAMA., 2015, 313:2021.
[133] 杜建(Du J), 唐小利(Tang X L). 中国科学基金(Bulletin of National Natural Science Foundation of China), 2016, 1:20.
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[4] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[5] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[6] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[9] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[10] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[11] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[12] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[13] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[14] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[15] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.