中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1664-1671 DOI: 10.7536/PC160221 Previous Articles   Next Articles

Special Issue: 酶化学

• Review and comments •

Supramolecular Artificial Enzyme Based on Assembling Peptide Gel

Zhao Yanan1, Wang Mengfan1,4*, Qi Wei1,2,3,4*, Su Rongxin1,2,3,4, He Zhimin1,2   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2. State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China;
    3. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China;
    4. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21676191, 21206113, 21476165) and the Natural Science Foundation of Tianjin (No. 13JCQNC09300).
PDF ( 1616 ) Cited
Export

EndNote

Ris

BibTeX

Mimic enzyme, or artificail enzyme, is a kind of non-protein molecule which is synthesized by the organic chemical method. With the development of nanoscience and supramolecular technology, the establishment of supramolecular artificial enzyme with biocatalytic function has attracted increasingly attention in the field of scientific research and application development. Peptide-based gel is a new type of supramolecular assembly which is formed with polypeptides as the building block and driven by non-covalent forces. As a novel supramolecular material, the peptide-based gel exhibits unique advantages compared with other functional materials:the similar structural and biochemical properties to those of natural enzymes, easy to be modified and functionalized, and the good biocompatibility. These properties make peptide-based gel a ideal material to construct artificial enzyme. In this review, we summarize the characteristics of artificial enzyme based on the assembling peptide gel and introduce the recent research progress of it as the catalysts in hydrolysis, Aldol and redox reactions. The main factors which influence the catalytic activity, such as the assembly degree, structure, active-site microenvironment and pH, are also discussed. Some examples are provided to illustrate the protential application of peptide-based artificial enzyme. Finally, the problems and prospective tendency are presented.

Contents
1 Introduction
2 Reaction types catalyzed by peptide-based artificial enzyme
2.1 Hydrolysis reaction
2.2 Aldol reaction
2.3 Redox reaction
3 Influence factors on the activity of peptide-based artificial enzyme
3.1 Assembly degree
3.2 Microstructure
3.3 Supramolecular structrue
3.4 Active-site microenvironment
3.5 pH
4 Application of peptide-based artificial enzyme
5 Conclusion

CLC Number: 

[1] Kirby A J. Angew. Chem. Int. Edit., 1996, 35:706.
[2] Motherwell W B, Bingham M J, Six Y. Tetrahedron, 2001, 57:4663.
[3] Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43:1734.
[4] Wiester M J, Ulmann P A, Mirkin C A. Angew. Chem. Int. Edit., 2011, 50:114.
[5] Wang Y, Xu H, Ma N, Wang Z, Zhang X, Liu J, Shen J. Langmuir, 2006, 22:5552.
[6] Yu S, Yin Y, Zhu J, Huang X, Luo Q, Xu J, Shen J, Liu J. Soft Matter, 2010, 6:5342.
[7] Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Langmuir, 2011, 27:13847.
[8] Escuder B, Rodriguez-Llansola F, Miravet J F. New J. Chem., 2010, 34:1044.
[9] Yan X, Zhu P, Li J. Chem. Soc. Rev., 2010, 39:1877.
[10] Gao X, Matsui H. Adv. Mater., 2005, 17:2037.
[11] Schneider F. Angew. Chem. Int. Edit., 1978, 17:583.
[12] Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129:12082.
[13] Zhang C, Xue X, Luo Q, Li Y, Yang K, Zhuang X, Jiang Y, Zhang J, Liu J, Zou G. ACS Nano, 2014, 8:11715.
[14] Huang Z, Guan S, Wang Y, Shi G, Cao L, Gao Y, Dong Z, Xu J, Luo Q, Liu J. J. Mater. Chem. B., 2013, 1:2297.
[15] 吕昱琦(Lv Y Q), 王梦凡(Wang M F), 齐威(Qi W), 苏荣欣(Su R X), 何志敏(He Z M). 高等学校化学学报(Chem. J. Chinese. U.), 2015, 36:1304.
[16] Wang M, Lv Y, Liu X, Qi W, Su R, He Z. ACS Appl. Mater. Inter., 2016, 8:14133.
[17] Rufo C M, Moroz Y S, Moroz O V, Stöhr J, Smith T A, Hu X, Degrado W F, Korendovych I V. Nat. Chem., 2014, 6:303.
[18] Font D, Sayalero S, Bastero A, Jimeno C, Pericàs M A. Org. Lett., 2008, 10:337.
[19] List B, Lerner R A, Barbas C F. J. Am. Chem. Soc., 2000, 122:2395.
[20] Rodriguez-Llansola F, Escuder B, Miravet J F. Org. Biomol. Chem., 2009, 7:3091.
[21] Rodríguez-Llansola F, Miravet J F, Escuder B. Chem-Eur. J., 2010, 16:8480.
[22] Diaz-Oltra S, Berdugo C, Miravet J F, Escuder B. New J. Chem., 2015, 39:3785.
[23] Rodriguez-Llansolu F, Escuder B, Miravet J F. J. Am. Chem. Soc., 2009, 131:11478.
[24] Berdugo C, Miravet J F, Escuder B. Chem. Commun., 2013, 49:10608.
[25] Berduyo C, Escuder B, Miravet J F. Org. Biomol. Chem., 2015, 13:592.
[26] Lee K S, Parquette J R. Chem. Commun., 2015, 51.
[27] Wang Q, Yang Z, Zhang X, Xiao X, Chang C K, Xu B. Angew. Chem. Int. Edit., 2007, 46:4285.
[28] Kim M C, Lee S Y. Nanoscale, 2015, 7:17063.
[29] Huang Z, Luo Q, Guan S, Gao J, Wang Y, Zhang B, Wang L, Xu J, Dong Z, Liu J. Soft Matter, 2014, 10:9695.
[30] Overstreet M F, Healy A F, Neath I. New J. Chem., 2015, 39:3785.
[31] Rodriguez-Llansola F, Escuder B, Hamley I W, Hayes W, Miravet J F. Soft Matter, 2012, 8:8865.
[32] Maeda Y, Fang J, Ikezoe Y, Pike D H, Nanda V, Matsui H. PloS One, 2016, 11:1.
[33] Singh N, Conte M P, Ulijn R V, Miravet J F, Escuder B. Chem. Commun., 2015, 51:13213.
[34] Gulseren G, Yasa I C, Ustahuseyin O, Tekin E D, Tekinay A B, Guler M O. Biomacromolecules, 2015, 16:2198.
[35] Kim J H, Nam D H, Lee Y W, Nam Y S, Park C B. Small, 2014, 10:1272.[FL)] [ST] [WT] [LM]
[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[6] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[7] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[10] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[11] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[12] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[13] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[14] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[15] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.