中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1435-1454 DOI: 10.7536/PC160203 Previous Articles   

• Review and comments •

Research and Prospect of Lithium-Sulfur Battery System

Deng Nanping1, Ma Xiaomin1, Ruan Yanli3, Wang Xiaoqing3, Kang Weimin1,2*, Cheng Bowen1,2*   

  1. 1. School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China;
    2. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China;
    3. School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51673148,51102178), the National Key Technology Support Program (No. 2015BAE01B03), the Innovation Fund for Technology of China (No. 14C26211200298), the Innovation Fund for Technology of Tianjin (No. 14ZXCXGX00776), the Chang-jiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT13084).
PDF ( 1261 ) Cited
Export

EndNote

Ris

BibTeX

The lithium-sulfur batteries are rather latest and high-performance storage batteries due to their rather high theoretical specific capacity(1675 mAh ·g-1) and energy density(2600 Wh ·kg-1). This study provides the entire and latest fundamental studies in lithium-sulfur batteries. The cathodes, binders, separators, electrolytes, anodes, some novel cell configurations and structure design of battery are introduced in details. For improving the conductivity of cathode material and suppressing the "shuttle effect", elemental sulfur can be combined with other materials as the cathodes of batteries through various ways. These can enhance the batteries performances. In terms of binders and electrolyte, some appropriate and functional binders and electrolyte are chosen which are compatible with electrode material. At the same time, in terms of separators, researchers mainly pay attention to the type choice or the separators composition and modified treatment. With regard to anodes, several methods have been considered for improving the batteries stability and safety based on metallic lithium such as coating thin dense protective layers or pre-lithiation treatment. Some novel cell configurations such as the application of interlayer, new collectors and new type structures of lithium-sulfur batteries are also vital aspects to greatly improve cell performances. At last, the future research directions associated with lithium-sulfur batteries have also been indicated.

Contents
1 Introduction
2 The principle and characterization of lithium-sulfur batteries
3 Cathode materials of lithium-sulfur batteries
3.1 Sulfur/carbon composites
3.2 Sulfur/conductive polymer composites
3.3 Sulfur/metal and its oxide composites
3.4 Sulfur/multiple sulfur-based compound
4 Binder of lithium-sulfur batteries
5 Electrolytes of lithium-sulfur batteries
5.1 Liquid electrolytes
5.2 Solid state electrolytes
5.3 Gel polymer electrolytes
5.4 Ionic liquid electrolytes
6 Separators of lithium-sulfur batteries
7 Anodes of lithium-sulfur batteries
8 Electrode structure design and modification of lithium-sulfur batteries
8.1 Interlayers and new type of collectors
8.2 New type structures of lithium-sulfur batteries
9 Summary and future directions

CLC Number: 

[1] Noorden R. Nature, 2013, 498:416.
[2] Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y, Energy Storage Mater. 2016, 2:107.
[3] Choi Y J, Chung Y D, Baek C Y, Kim K W, Ahn H J, Ahn J H. J. Power Sources, 2008, 184:548.
[4] Dean J A. Lnage's Hnadbook of Chemisty.3rd ed, New York:McGrawHill, 1985. 462.
[5] Gaillard F, Levillain E. J. Electroanal. Chem., 1995, 398:77.
[6] Linden D, Reddy T B. Handbook of Batteries, 4th ed, New York:McGrawHill, 2002. 34.
[7] Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J, Sci. 2016, 351(6271):361.
[8] Dominic B, Stefano P, Bruno S. Chem. Commun., 2013, 49(90):10545.
[9] 董全峰(Dong Q F),王翀(Wang C),郑明森(Zheng M S).化学进展(Progress in Chemistry),2011, 23:533.
[10] Manthiram A, Fu Y Z, Chung S H. Chem. Rev., 2014, 114:11751.
[11] Diao Y, Xie K, Hong X B. Acta Chim. Sinica, 2013, 71:508.
[12] Borchardt L, Oschatz M, Kaskel S. Chem. Eur. J., 2016, 22:7324.
[13] Jozwiuk A, Sommer H, Janek J, Brezesinski T. J. Power Sources, 2015, 296:454.
[14] Li B, Li S M, Liu J H, Wang B, Yang S B. Nano Lett., 2015, 15:3073.
[15] Ding B, Chang Z, Xu G Y, Nie P, Wang J, Pan J, Dou H, Zhang X G. ACS Appl. Mater. Interfaces, 2015, 7:11165.
[16] Li Y C., Mi R, Li S M, Liu X C, Ren W, Liu H, Mei J, Lau W M. Int. J. Hydrogen Energ., 2014, 39:16073.
[17] Zheng G, Zhang Q, Cha J J, Yang Y, Li W, Seh Z W, Cui Y. Nano Lett., 2013, 13(3):1265.
[18] Yuan G H, Wang H D. J. Nat. Gas. Chem., 2014, 23:657.
[19] Zhang Y G, Bakenov Z, Zhao Y, Konarov A, Doan T N L, Malik M, Paron T, Chen P. J. Power Sources, 2012, 208:1.
[20] Zhou W D, Yu Y C., Chen H, DiSalvo F J, Abruna H D. J. Am. Chem. Soc., 2013, 135:16736.
[21] Wei P, Fan M Q, Chen H C, Yang X R, Wu H M, Chen J D, Li T, Zeng L W, Li C M, Ju Q J, Chen D, Tian G L, Lv C. J. Renewable Energy, 2016, 86:148.
[22] 马国强(Ma G Q), 温兆银(Wen Z Y), 王清松(Wang Q S), 靳俊(Jin J), 吴相伟(Wu X W), 张敬超(Zhang J C).无机材料学报(Journal of Inorganic Materials), 2015,30:913.
[23] Zhang Y, Wang L Z, Zhang A Q, Song Y H, Li X F, Feng H,Wu X B, Du P P. Solid State Ionics, 2010, 181:835.
[24] Ding B, Shen L F, Xu G Y, Nie P, Zhang X G. Electrochim. Acta, 2013, 107:78.
[25] Xie K Y, Han Y Z, Wei W F, Yu H R, Zhang C B, Wang J G, Lu Wei, Wei B Q. RSC Adv., 2015, 5:1.
[26] Cao F, Pan G X, Chen J, Zhang Y J, Xia X H. J. Power Sources, 2016,303:35.
[27] Kim C S, Guerfi A, Hovington P, Trottier J, Gagnon C, Barray F, Vijh A, Armand M, Zaghib K. Electrochem. Commun., 2013, 32:35.
[28] Zhang Y, Wu X B, Feng H, Wang L Z, Zhang A Q, Xia T C, Dong H C. Int. J. Hydrogen Energ., 2009, 34:1556.
[29] Song M S, Han S C, Kim H S, Kim J H, Kim K T, Kang Y M, Ahn H J, Dou S X, Lee J Y. J. Electrochem. Soc., 2004, 151:791.
[30] Zhang Y G, Zhao Y, Doan T N L, Konarov A, Gosselink D. Solid State Ionics, 2013, 238:30.
[31] Zhao X H, Kim J K, Ahn H J, Cho K K, Ahn J H. Electrochim. Acta, 2013, 109:145.
[32] Zhang Z A, Li Q, Zhang K, Chen W, Lai Y Q, Li J. J. Power Sources, 2015, 290:159.
[33] Rezan D C. J. Power Sources, 2015, 282:437.
[34] Lee K T, Black R, Yim T, Ji X L, Nazar L F. Adv. Energy Mater., 2012, 2:1490.
[35] Zhang Y G, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P. J. Mater. Chem. A, 2013, 1:295.
[36] Cai K P, Song M K, Cairns E J, Zhang Y G. Nano Lett., 2012, 12:6474.
[37] Fu Y Z, Su Y S, Manthiram A. Adv. Energy Mater., 2014, 4:1300655.
[38] Zhou G M, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[39] 卢松涛(Lu Y C). 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2014.
[40] Manthiram A, Fu Y, Su Y. Acc. Chem. Res., 2013, 45:1125.
[41] Liu S, Li Y, Hong X, Xu J, Zheng C, Xie K. Electrochim. Acta, 2015, 188:516.
[42] Chen L, Shaw L L. J. Power Sources, 2014, 267:770.
[43] Lin Z, Liang C. J. Mater. Chem. A, 2015, 3:936.
[44] Lacey M J, Fabian J, Kristina E, Daniel B. Chem. Commun., 2013, 49(76):8531.
[45] Wang H Q, Sencadas V, Gao G P, Gao H, Du A J, Liu H K, Guo Z P. Nano Energy, 2016, 26:722.
[46] Hong X H, Jin J, Wen Z Y, Zhang S P, Wang Q S, Shen C, Rui K. J. Power Sources, 2016, 324:455.
[47] Song M K, Zhang Y, Cairns E J. Nano Lett., 2013, 13:5891.
[48] Notake K, Gunji T, Kokubun H, Kokubun H, Kosemura S, Mochizuki Y, Tanabe T, Kaneko S, Ugawa S, Lee H. J. Appl. Electrochem., 2016,46(3):267.
[49] Lacey M J, Jeschull F, Edstr m K, Brandell D. J. Power Sources, 2014, 264:8.
[50] Li G R, Cai W L, Liu B H, Li Z P. J. Power Sources, 2015, 294:187.
[51] Zhi W S, Zhang Q, Li W, Zheng G, Yao H, Cui Y. Chem. Sci., 2013, 4(9):3673.
[52] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochim. Acta, 2008, 53:7084.
[53] Wang Y, Huang Y Q, Wang W K, Huang C J, Yu Z B, Zhang H, Sun J, Wang A, Yuan K. Electrochim. Acta, 2009, 54:4062.
[54] Bao W Z, Zhang Z A, Gan Y Q, Wang X A, Lia J. J. Energ. Chem., 2013, 22:790.
[55] Wang J L, Yao Z D, Monroe C W, Yang J, Nuli Y. Adv. Funct. Mater., 2013, 23:1194.
[56] Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Adv. Mater., 2011, 23:5641.
[57] D rfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann M J. Chem. Commun., 2012, 48:4097.
[58] Lu H, Zhang K, Yuan Y, Qin F, Zhang Z A, Lai Y Q, Liu Y X. Electrochim. Acta, 2015, 161:55.
[59] Azimi N, Weng W, Takoudis C, Zhang Z C. Electrochem. Commun., 2013, 37:96.
[60] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahn H J, Kim K W. Electrochim. Acta, 2007, 52:2075.
[61] Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J. J. Electrochem. Soc., 2009, 156(8):40.
[62] Xiong S Z, Diao Y, Hong X B, Chen Y C, Xie K. J. Electroanal. Chem., 2014, 719:122.
[63] Xiong S Z, Xie K, Blomberg E, Jacobsson P, Matic A. J. Power Sources, 2014, 252:150.
[64] Xiong S Z, Xie K, Diao Y, Hong X B. J. Power Sources, 2013, 236:181.
[65] Tatsumisago M, Nagao M, Hayashi A. J. Am. Ceram. Soc., 2013, 1:17.
[66] Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. Phys. Chem. Chem. Phys., 2013, 15:18600.
[67] Nagao M, Hayashi A, Tatsumisago M. Energy Technol., 2013, 1:186.
[68] Shin J H, Kim K W, Ahn H J, Ahn J H. Mater. Sci. Eng. B, 2002, 95:148.
[69] Hassoun J, Scrosati B. Adv. Mater., 2010, 22:5198.
[70] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10:682.
[71] Zhang S S, Tran D T. Electrochim. Acta, 2013, 114:296.
[72] Lim D H, Manuel J, Ahn J H, Kim J K, Jacobsson P, Matic A, Ha J K, Cho K K, Kim K W. Solid State Ionics, 2012, 225:631.
[73] Raghavan P, Manuel J, Zhao X H, Kim D S, Ahn J H. J. Power Sources, 2011, 196:6742.
[74] Wang S H, Hou S S, Kuo P L, Teng H. ACS Appl. Mater. Interfaces, 2013, 5:8477.
[75] Park J W, Yamauchi K, Takashima E, Tachikawa N, Ueno K, Dokko K, Watanabe M. J Phys. Chem. C, 117, 2013:4431.
[76] Ueno K, Park J W, Yamazaki A, Mandai T, Tachikawa N, Dokko K, Watanabe M. J. Phys. Chem. C, 2013, 117:20509.
[77] Unemoto A, Ogawa H, Gambe Y, Honma I, Electrochim. Acta, 2014, 125:386.
[78] Zhang Z Y, Lai Y Q, Zhang Z A, Zhang K, Li J. Electrochim. Acta, 2014, 129:55.
[79] Zhang Z Y, Lai Y Q, Zhang Z A, Li J. Solid State Ionics, 2015, 278:166.
[80] Gu M S, Lee J, Kim Y, Kim J S, Jang B Y, Lee K T, Kim B S. RSC Adv., 2014, 4:46940.
[81] Jin Z Q, Xie K, Hong X B, Hu Z Q, Liu X. J. Power Sources, 2012, 218:163.
[82] Wei H, Ma J, Li B. ACS Appl. Mater.Interfaces, 2014, 6:20276.
[83] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Energy Environ. Sci., 2013, 7:347.
[84] Zhao Y, Zhang Y G, Bakenov Z, Chen P. Solid State Ionics, 2013, 234:40.
[85] Zhang Y G, Zhao Y, Bakenov Z. Nano Res. Lett., 2014, 9:137.
[86] Zhang Y G, Zhao Y, Bakenov Z, Chen D G P. J. Solid State Electrochem., 2014, 18:1111.
[87] Jin Z Q, Xie K, Hong X B. RSC Adv., 2013, 3:8889.
[88] Song X Y, Ding W Q, Cheng B W, Xing J F. Polym. Composites. 2015. Version of Record online:29 MAY 2015, DOI:10.1002/pc.23621.
[89] Kang W M, Ma X M, Zhao Y X, Zhao H H, Cheng B W, Liu Y B. Acta. Polym. Sin., 2015,11:1258.
[90] Shi S J, Zhuang X P, Cheng B W, Wang X Q. J. Mater. Chem., 2013, 1:13779.
[91] Zhang B, Zhuang X P, Cheng B W, Wang N, Ni Y. Mater. Lett., 2014, 115:248.
[92] Wang H Y,Wu D Y. Nanoscale, 2011, 3:3601.
[93] Tang D H, Wu D Y. Chem. Eur. J., 2009, 15:10352
[94] Zhuang X P, Jia K F, Cheng B W, Guan K T, Kang W M, Ren Y L. J. Eng. Fibre Fabr., 2013, 8(1):88.
[95] Wang H, Zhuang X P, Cheng B W,Tong J, Li X, Wang W. J. Appl. Polym. Sci., 2015, 132(47):168.
[96] Zhang Y J, Liu X Y, Bai W Q, Tang H, Shi S J, Wang X L, Gu C D, Tu J P. J. Power Sources, 2014, 266:43.
[97] Kim J S, Kim D W, Jung H T, Choi J W. J. Am. Chem. Soc., 2015, 27:2780.
[98] Wu F, Qian J, Chen R J, Lu J, Li L,Wu H M, Chen J Z, Zhao T, Ye Y S, Amine K. ACS Appl. Mater. Interfaces, 2014, 6:15542.
[99] Brückner J, Thieme S, B ttger-Hiller F, Bauer I, Grossmann H T, Strubel P, Althues H, Spange S, Kaskel S. Adv. Funct. Mater., 2014, 24:1284.
[100] Yan Y, Yin Y X, Xin S, Jing S, Guo Y G, Wan L J. Electrochim. Acta, 2013, 91:58.
[101] Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. Nano Lett., 2010, 10:1486.
[102] Ryu H S, Ahn H J, Kim K W, Ahn J H, Cho K K, Nam T H. Electrochim. Acta, 2006, 52(4):1563.
[103] Huang J Q, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9(3):3002.
[104] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151:A1969.
[105] Su Y S, Manthiram A. Chem. Commun., 2012, 48:8817.
[106] Xing L B, Xi K, Li Q Y, Su Z, Lai C, Zhao X S, Kumar R V. J. Power Sources, 2016, 303:22.
[107] Chung S H, Manthiram A, Chem. Commun., 2014, 50:4184.
[108] Wang X F, Wang Z X, Chen L Q. J. Power Sources, 2013, 242:65.
[109] Chai L Y, Wang J X, Wang H Y, Zhang L Y, Yu W T, Mai L Q. Nano Energy, 2015, 17:224.
[110] Kim H, Lee J T, Yushin G. J. Power Sources, 2013, 226:256.
[111] Chung S H, Manthiram A. Electrochem.Commun., 2014, 38:91.
[112] Wang L, He X M, Li J J. J. Power Sources, 2013, 239:623.
[113] Cao Y L, Li X L, Aksay I A, Lemmon J, Nie Z M, Yang Z G, Liu J. Phys. Chem. Chem. Phys., 2011, 13:7660.
[114] Zhou G M, Pei S F, Li L,Wang D W, Wang S G, Huang K, Yin L C, Li F, Cheng H M. Adv. Mater., 2014, 26:625.
[115] Fu Y Z, Su Y S, Manthiram A. Adv. Energy Mater., 2013, 4:82.
[116] Zheng D, Zhang X R, Wang J K, Qu D Y, Yang X Q, Qu D Y, J. Power Sources, 2016, 301:312.
[117] 万文博(Wan W B), 蒲薇华(Pu W H), 艾德生(Ai D S). 化学进展(Progress in Chemistry), 2013, 25(11):1830.
[118] 赖超(Lai C), 李国春(Li G C), 叶世海(Ye S H),高学平(Gao X P). 化学进展(Progress in Chemistry), 2011,23:527.
[119] 周兰(Zhou L), 余爱水(Yu A S). 电化学(Journal of Electrochemistry), 2015, 21(3):211.
[120] 辛培明(Xi P M), 金波(Jin B), 侯甲子(Hou J Z), 严庆光(Yan Q G), 钟晓斌(Zhong X B), 王环环(Wang H H), 高凡(Gao F). 储能科学与技术(Energy Science & Engineering), 2015, 4(4):374.
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[4] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[5] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[6] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[7] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[8] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[9] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[10] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[11] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[12] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[13] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.
[14] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[15] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.