中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 628-636 DOI: 10.7536/PC160141 Previous Articles   Next Articles

• Review and comments •

Preparation and Biological Applications of DNA Hydrogel

Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei*   

  1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21422508).
PDF ( 1979 ) Cited
Export

EndNote

Ris

BibTeX

DNA possesses characteristics such as excellent biocompatibility, biodegradation, molecular recognition ability, nanoscale controllability and programmability. In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as generic materials for nanoscale engineering. DNA hydrogel combines the characteristics both from DNA and hydrogel, such as controllable shape, high mechanical strength, materials delivery. The hydrogel formation includes chemical method based formation via covalent bond and physical method based formation via non covalent bond. DNA hydrogel can combine with perssad, molecule or DNA sequence which can be sensitive to incitant stimulating factor in order to expand the application of DNA hydrogel. DNA hydrogel can be sensitive to stimuli-response, such as pH, light, temperature and small molecules. These novel DNA hydrogels provide a natural bridge between nanotechnology and biotechnology, and this also leads DNA hydrogel to far-ranging real-world applications. Because of this, DNA hydrogel as a smart material has been widely used in biosensor, drug delivery, and three-dimensional cell culture. In this review, we summarize the classification of DNA hydrogel and then give the stimuli-response DNA hydrogel and its biological application. Also, the development prospect of DNA hydrogel is demonstrated.

Contents
1 Introduction
2 Formation mechanism of DNA hydrogel
2.1 Chemical method based DNA hydrogel formation
2.2 Physical method based DNA hydrogel formation
3 Stimuli-responsive DNA hydrogel
3.1 pH-responsive DNA hydrogel
3.2 Photo-responsive DNA hydrogel
3.3 Temperature-responsive DNA hydrogel
3.4 Molecule-responsive DNA hydrogel
4 Applications
4.1 Biosensor
4.2 Drug delivery
4.3 3D cell culture
5 Conclusion and outlook

CLC Number: 

[1] 王镜岩(Wang J Y),朱圣庚(Zhu S J),徐长法(Xu C F). 生物化学(Biochemistry), 北京:高等教育出版社(Beijing:High Education Press), 2002.
[2] Seeman N C. J. Theor. Biol., 1982, 99: 237.
[3] Erben C M, Goodman R P, Turberfield A J. Angew. Chem. Int. Ed., 2006, 45: 7414.
[4] Lin C, Liu Y, Yan H. Biochemistry, 2009, 48: 1663.
[5] Zhang F, Nangreave J, Liu Y, Yan H. J. Am. Chem. Soc., 2014,136: 11198.
[6] Chen X, Zhou G B, Song P, Wang J J, Gao J M, Lu J, Fan C H, Zuo X L. Anal. Chem., 2014, 86(15): 1337
[7] White R J, Plaxco K W. Anal. Chem. 2009, 82: 73.
[8] Das J, Ivanov I, Montermini L, Rak J, Sargent E H, Kelley S O. Nat. Chem., 2015, 7: 569.
[9] Shen J, Li Y, Gu H, Xia F, Zuo X. Chem. Rev., 2014, 114(15): 7631.
[10] Yao G B, Li J, Chao J, Pei H, Liu H, Zhao Y, Shi J Y, Huang Q, Wang L H, Huang W, Fan C H. Angew. Chem. Int. Ed., 2015, 54: 2966.
[11] Yan J, Hu C, Wang P, Zhao B, Ouyang X Y, Zhou J, Liu R, He D N, Fan C H, Song S P. Angew. Chem. Int. Ed., 2015, 54: 2431.
[12] Pei H, Liang L, Yao G B, Li J, Huang Q, Fan C H. Angew. Chem. Int. Ed., 2012, 51: 9020.
[13] Pei H, Wan Y, Li J, Hu H Y, Su Y, Huang Q, Fan C H. Chem. Commun., 2011, 47: 6254.
[14] Lu N, Pei H, Ge Z L, Simmons Chad R, Yan H, Fan C H. J. Am. Chem. Soc., 2012, 134: 13148.
[15] Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M, Fan C H, Ricci F. J. Am. Chem. Soc., 2014, 136(47): 16469.
[16] 葛志磊(Ge Z L), 樊春海(Fan C H), Yan Hao. 科学通报(Chinese Science Bulletin), 2014, 59(2): 146.
[17] Pei H, Zuo X L, Pan D, Shi J, Huang Q, Fan C H. NPG Asia. Mater., 2013, 5: e51.
[18] Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P. ACS Nano, 2014, 8: 3251.
[19] Zhang D Y, Seelig G. Nat. Chem., 2011, 3: 103.
[20] Zhang D Y. J. Am. Chem. Soc., 2011, 133: 1077.
[21] Zhang D Y, Chen S X, Yin P. Nat. Chem., 2012, 4: 208.
[22] Chen S X, Zhang D Y, Seeling G. Nat. Chem., 2013, 5: 782.
[23] Miwa Y, Zinchenko A, Lopatina L I, Sergeyev V G, Murata S. Polym. Int., 2014, 63(9), 1566.
[24] Liedl T, Dietz H, Yurke B, Simmel F. Small, 2007, 3: 1688.
[25] 王萍(Wang P), 葛志磊(Ge Z L), 裴昊(Pei H), 王丽华(Wang L H), 樊春海(Fan C H). 化学学报(Act Chim. Sinica), 2012, 70: 2127.
[26] 刘刚(Liu G), 万莹(Wan Y), 邹子英(Zou Z Y),任淑贞(Ren S Z), 樊春海(Fan C H). 分析化学(Chinese J. Anal. Chem.), 2011, 39(7): 953.
[27] 闻艳丽(Wen Y L), 林美华(Lin M H), 裴昊(Pei H), 鲁娜(Lu N), 樊春海(Fan C H). 化学进展(Progress in Chemistry), 2012, 9: 1657.
[28] 葛志磊(Ge Z L), 裴昊(Pei H), 王丽华(Wang L H), 宋世平(Song S P), 樊春海(Fan C H), 中国科学:化学(Scientia Sinica Chimical), 2011, 41(10): 1666.
[29] Ke G, Zhu Z, Wang W, Zou Y, Guan Z, Jia S, Zhang H, Wu X, Yang C J. ACS Appl. Mater. Interfaces, 2014, 6: 15329.
[30] Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang C J. Anal. Chem., 2013, 85: 4141.
[31] Ensslen P, Gärtner S, Glaser K, Colsmann A, Wagenknecht H A. Angew. Chem. Int. Ed., 2016, 55: 1904.
[32] Halstead J M, Lionnet T, Wilbertz J H, Wippich F, Ephrussi A, Singer R H, Chao J A. Science, 2015, 347: 1367.
[33] Zhang P, Wu X, Yuan R, Chai Y. Anal. Chem. 2015, 86(6): 3202.
[34] Fu C, Xu W, Wang H, Ding H, Liang L, Cong M, Xu S. Anal. Chem., 2014, 86(23): 11494.
[35] Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 7998.
[36] Tram K, Kanda P, Salena B J, Huan S Y, Li Y F. Angew. Chem. Int. Ed., 2014, 53: 12799.
[37] Wang F A, Liu X Q, Willner I. Angew. Chem. Int. Ed., 2014, 53: 2.
[38] Zuo X L, Xia F, Xiao Y, Plaxco K W. J. Am. Chem. Soc., 2010, 132: 1816.
[39] Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y X. Angew. Chem. Int. Ed., 2015, 54: 3962.
[40] Kimberly G. Olsen, David J. Ross, Michael J. Tarlov. Anal.Chem., 2002,74: 1436.
[41] Nçll T, Schçnherr H, Wesner D, Schopferer M, Paululat T, Nçll G. Angew. Chem. Int. Ed., 2014, 126: 8468.
[42] Okay O. J. Polym. Sci. Pol. Phys., 2011, 49: 551.
[43] Seliktar D, Science, 2012, 336: 1124.
[44] Yang D Y, Hartman M R, Derrien T L, Hamada S, An D, Yancey K G, Cheng R, Ma M L, Luo D. Acc. Chem. Res., 2014, 47: 1902.
[45] Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D. Angew. Chem. Int. Ed., 2009, 121: 7796.
[46] Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D. Nat. Mater., 2006, 5: 797.
[47] Lee J B, Peng S, Yang D, Roh Y H, Funabashi H, Park N, Rice E J, Chen L, Long R, Wu M, Luo D. Nat. Nanotechnol., 2012, 7: 816.
[48] Zhang L, Lei J, Liu L, Li C, Ju H X. Anal. Chem., 2013, 85(22): 11077.
[49] Li C, Rowland M J, Shao Y, Cao T Y, Chen C, Jia H Y, Zhou X, Yang Z Q, Scherman O A, Liu D S. Adv. Mater., 2015, 27: 3298.
[50] Wang F, Lu C H, Willner I. Chem. Rev., 2014, 114: 2881.
[51] Lin D C, Yurke B, Langrana N A. J. Biomech. Eng., 2004, 126(1): 104.
[52] Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D. Adv. Mater., 2011, 23: 1117.
[53] Topuz F, Okay O. Macromolecules, 2008, 41: 8847.
[54] Jiang F, Yurke B, Firestein B, Langrana N. Ann. Biomed. Eng., 2008, 36:1565.
[55] Guo W, Lu C H, Orbach R, Wang F, Qi X J, Cecconello A, Seliktar D, Willner I. Adv. Mater., 2015, 27: 73.
[56] Guo W, Lu C H, Qi X J, Orbach R, Fadeev M, Yang H H, Willner I. Angew. Chem. Int. Ed., 2014, 53: 10134.
[57] Peng L, You M, Yuan Q, Wu C, Han D, Chen Y, Zhong Z, Xue J, Tan W. J. Am. Chem. Soc., 2012, 134: 12302.
[58] Kahn J S, Trifonov A, Cecconello A, Guo W, Fan C, Willner I. Nano Lett., 2015, 15: 7773.
[59] Huang Y, Ma Y, Chen Y, Wu X, Fang L, Zhu Z, Yang C J. Anal. Chem., 2014, 86: 11434.
[60] He X, Wei B, Mi Y. Chem. Commun., 2010, 46: 6308.
[61] Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z, Yang C J. Anal. Chem., 2015, 87: 4275.
[62] Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang C J, Tan W. Angew. Chem. Int. Ed., 2010, 122: 1070.
[63] Lee H Y, Jeong H, Jung Y, Jang B, Chang S Y, Lee H, Lee H. Adv. Mater., 2015, 27: 3513.
[64] Baeissa A, Dave Neeshma, Brendan D. Smith, Liu J W. ACS Appl. Mater. Interfaces, 2010, 2: 3594.
[65] Nishikawa M, Rattanakiat S, Takakura Y. Adv. Drug Deliver. Rev., 2010, 62: 626.
[66] Muro S. Adv. Funct. Mater., 2014, 24: 2899.
[67] Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann V A, Kurreck J. Nucleic. Acids. Res., 2003, 31: 3185.
[68] Sheehan J P, Lan H C. Blood, 1998, 92: 1617.
[69] Brown D A, Kang S H, Gryaznov S M, DeDionisio L. J. Biol.Chem., 1994, 269: 26801.
[70] Levin A A. Biochim. Biophys. Acta., 1999, 1489: 69.
[71] Henry S P, Beattie G, Yeh G, Chappel A, Giclas P, Mortari A, Jagels M A, Kornbrust D J, Levin A A. Int. Immunopharmacol., 2002, 2: 1657.
[72] Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. ACS Nano, 2012, 6: 5931.
[73] Song J, Im K, Hwang S, Hur J, Nam J, Ahn G O, Hwang S, Kim S, Park N. Nanoscale, 2015, 7: 9433.
[74] Hu R, Yuan H, Wang B, Liu L, Lv F, Wang S, ACS Appl. Mater. Interfaces, 2014, 6: 11823.
[75] Sun L P, Hu N, Peng J, Chen L Y, Weng J. Adv. Funct. Mater., 2014, 24: 6905.
[76] Li C, Faulkner-Jones A, Dun A R, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan R R. Angew. Chem. Int. Ed., 2015, 54: 3957.
[77] Jin J, Xing Y, Xi Y, Liu X, Zhou T, Ma X, Yang Z, Wang S, Liu D. Adv. Mater., 2013, 25: 4714.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[3] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[4] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[5] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[6] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[7] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[8] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[9] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[10] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[11] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[12] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[13] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[14] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[15] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.