中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1299-1312 DOI: 10.7536/PC151212 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review and comments •

Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive

Ma Guoqiang1,2, Wang Li1, Zhang Janjun2, Chen Huichuang2, He Xiangming1*, Ding Yuansheng2   

  1. 1. Beijing Key Lab of Fine Ceramics, Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Zhejiang Chemical Industry Research Institute Co. Ltd., Hangzhou 310023, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Basic Research Development Program of China (973 Program)(No. 2013CB934000),the Major Projects of National Natural Science Foundation of China(No. U1564205),the Natural Science Foundation of Beijing, China(No. 2014DFG71590),the Project of Science and Technology Department of Zhejiang Province(No. 2016F50051),and the Project funded by China Postdoctoral Science Foundation (No. 2016M590550).
PDF ( 5488 ) Cited
Export

EndNote

Ris

BibTeX

With the development of large mobile equipments (such as electric vehicles), energy storage power stations and the other portable charging devices, lithium-ion battery is gradually occupying the dominant position of the chemical power market. Electrolyte is one of the most important components of lithium-ion battery, having a significant impact on many properties of lithium-ion battery, such as the output voltage, energy density, power density, longevity, temperature range, safety performance and so on. In general, owing to the very high electronegativity and low polarizability of fluorine, fluorinated organic solvent shows very different physical properties compared to the common organic solvent. Specifically, fluorinated solvent has a low melting point, high flash point, high oxidation decomposition voltage, and good wettability with the electrode material. Therefore, fluorinated solvent has a potential application in the research and development for high voltage electrolyte, high security electrolyte, wide temperature window liquid electrolyte, and the other special functional electrolyte. Here, the recent research and applications on fluorinated solvents and additives in lithium-ion battery electrolyte are reviewed. The mechanisms for the enhancement performance of lithium-ion battery electrolyte with the use of fluorinated solvents and additives are also analyzed and discussed in detail. Simultaneously, the fabrication methods of fluorinated solvents such as fluorinated ethylene carbonate (FEC) are summarized. Finally, the research prospects and problems for fluorinated solvents and additives in lithium-ion battery electrolyte are also discussed in detail.

Contents
1 Introduction
2 High-voltage electrolyte
2.1 The solvent of high-voltage electrolyte
2.2 The additive of high-voltage electrolyte
3 High security electrolyte
3.1 The nonflammable electrolyte containing flrorinated solvent
3.2 Fluorinated flame retardant additives
4 High and low temperature electrolyte
4.1 High temperature electrolyte
4.2 Low temperature electrolyte
5 The other functional electrolytes
5.1 Fluorinated solvent and additive with special function
5.2 The application of fluorinated solvent and additive in new type battery

CLC Number: 

[1] Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D. J. Mater. Chem., 2011, 21:9938.
[2] Fergus J W. J. Power Sources, 2010, 195:939.
[3] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135:1167.
[4] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energ. Environ. Sci., 2011, 4:3243.
[5] Quartarone E, Mustarelli P. Chem. Soc. Rev., 2011, 40:2525.
[6] Xu K. Chem. Rev., 2004, 104(10):4303.
[7] Xu K. Chem. Rev., 2014, 114:11503.
[8] 胡伟跃(Hu W Y). 中南大学博士毕业论文(Doctoral Dissertation of Center South University), 2005.
[9] Oesten R, Heider U, Schmidt M. Solid State Ionics, 2002, 148:391.
[10] Tan S, Ji Y J, Zhang Z R, Yang Y. Chem.Phys.Chem., 2014, 15:1956.
[11] Vetter J, Novák P, Wagner M R, Veit C, M ller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. J. Power Sources, 2005, 147:269.
[12] Li J, Daniel C, Wood D. J. Power Sources, 2011, 196:2452.
[13] Aravindan V, Gnanaraj J, Madhavi S, Liu H K. Chemistry, 2011, 17:14326.
[14] Xu K, Zhang S S, Lee U, Allen J L, Jow T R. J. Power Sources, 2005, 146:79.
[15] Zhang S S. J. Power Sources, 2006, 162:1379.
[16] Nakajima T. J. Fluorine Chem., 2000, 105:10.
[17] Nakajima T, Dan K, Koh M, Ion T, Shimizu T. J. Fluorine Chem., 2001, 111:8.
[18] Armand M, Tarascon J M. Nature, 2008, 451:652.
[19] Kawai H, Nagat M, Tukamoto H, West A R. J. Power Sources, 1999, 81/82:67.
[20] Hu M, Pang X, Zhou Z. J. Power Sources, 2013, 237:229.
[21] Wu F, Zhou H, Bai Y, Wang H, Wu C. ACS Appl. Mater. Interfaces, 2015, 7:15098.
[22] Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2011, 115:12120.
[23] 齐爱(Qi A). 中南大学硕士学位论文(Master Dissertation of Center South University), 2014.
[24] 吴贤文(Wu X W). 中南大学博士毕业论文(Doctoral Dissertation of Center South University), 2013.
[25] Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energ. Environ. Sci., 2013, 6:1806.
[26] McMillan R, Helen S, Shu Z X, Wang W. J. Power Sources, 1999, 81:7.
[27] Chen L, Wang K, Xie X, Xie J. J. Power Sources, 2007, 174:538.
[28] Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. ACS Appl. Mater. Interfaces, 2011, 3:4165.
[29] Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D. Langmuir, 2014, 30:7414.
[30] Hu L, Zhang Z, Amine K. Electrochem. Commun., 2013, 35:76.
[31] Ryou M H., Han G B., Lee Y M, Lee J N, Lee D J, Yoon Y O, Park J K. Electrochim. Acta, 2010, 55:2073.
[32] Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y. Electrochim. Acta, 2013, 87:466.
[33] Etacheri V, Haik O, Goffer Y, Roberts G A, Stefan I C, Fasching R, Aurbach D. Langmuir, 2012, 28:965.
[34] Smart M C, Ratnakumar B V, Ryan-Mowrey V S, Surampudi S, Prakash G K S, Hu J, Cheung I. J. Power Sources, 2003, 119/121:359.
[35] Xia L, Xia Y, Wang C, Hu H, Lee S, Yu Q, Chen H, Liu Z. ChemElectroChem, 2015, 2(11):1707.
[36] Shao N, Sun X G., Dai S, Jiang D E. J. Phys. Chem. B, 2012, 116:3235.
[37] Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P. J. Power Sources, 2014, 246:184.
[38] Xu M, Liu Y, Li B, Li W, Li X, Hu S. Electrochem. Commun., 2012, 18:123.
[39] Cresce A, Xu K. J. Electrochem. Soc., 2011, 158(3):A337.
[40] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H, Hu W Q. J. Power Sources, 2009, 191:575.
[41] 任春燕(Ren C Y). 中南大学硕士毕业论文(Master Dissertation of Center South University), 2012.
[42] 马玉林(Ma Y L)哈尔滨工业大学博士毕业论文(Doctoral Dissertation of Harbin Institute of Technology), 2010.
[43] Sato K I Y, Okada S, Yamaki J. Solid State Ionics, 2002, 148:4.
[44] Arai J, Katayama H, Akahoshi H. J. Electrochem. Soc., 2002, 149:A217.
[45] Ihara M, Hang B T, Sato K, Egashira M, Okada S, Yamaki J. J. Electrochem. Soc., 2003, 150:A1476.
[46] Arai J. J. Appl. Electrochem., 2002, 32:9.
[47] Satoh T, Nambu N, Takehara M, Ue M, Sasaki Y. ECS Transactions, 2013, 50(48):6.
[48] Arai J. J. Power Sources, 2003, 119/121:388.
[49] Nagasubramanian G, Orendorff C J. J. Power Sources, 2011, 196:8604.
[50] Matsuda Y, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Fluorine Chem., 2011, 132:1174.
[51] Ohmi N, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Power Sources, 2013, 221:6.
[52] Xu K, Zhang S, Allen J L, Jow T R. J. Electrochem. Soc., 2002, 149:A1079.
[53] Xu K, Ding M S, Zhang S, Allen J L, Jow T R. J. Electrochem. Soc., 2003, 150:A161.
[54] Tsujikawa T, Yabuta K, Matsushita T, Matsushima T, Hayashi K, Arakawa M. J. Power Sources, 2009, 189:429.
[55] Zhang Q, Noguchi H, Wang H, Yoshio M, Otsuki M, Ogino T. Chem. Lett., 2005, 34:1012.
[56] Amine K, Liu J, Belharouak I. Electrochem. Commun., 2005, 7:669.
[57] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159:702.
[58] Zhang S S, Xu K, Jow T R. J. Power Sources, 2004, 130:281.
[59] Yamakia J, Yamazaki I, Egashira M, Okada S. J. Power Sources, 2001, 102:6.
[60] Sato K, Yamazaki I, Okada S, Yamaki J. Solid State Ionics, 2002, 148:4.
[61] Sato K, Zhao L, Okada S, Yamaki J. J. Power Sources, 2011, 196:5617.
[62] Zhao L, Okada S, Yamaki J. J. Power Sources, 2013, 244:369.
[63] Plichta E J, Behl W K. J. Power Sources, 2000, 88:5.
[64] Smart M C, Ratnakumar B V, Surampudi S. J. Electrochem. Soc., 2002, 149:A361.
[65] 丁远雷(Ding Y L). 苏州大学硕士学位论文(Master Dissertation of Soochow University), 2014.
[66] 任永欢(Ren Y H). 北京理工大学博士毕业论文(Doctoral Dissertation of Beijing Institute of Technology), 2015.
[67] Smith K A, Smart M C, Prakash G K S, Ratnakumar B V. ECS Transactions, 2008, 11:91.
[68] Lu W, Xie K, Pan Y, Chen Z X, Zheng C. J. Fluorine Chem., 2013, 156:136.
[69] Lu W, Xie K, Chen Z X, Pan Y, Zheng C. J. Fluorine Chem., 2014, 161:110.
[70] Lu W, Xie K, Chen Z, Xiong S, Pan Y, Zheng C. J. Power Sources, 2015, 274:676.
[71] Aurbach D, Gamolsky K, Markovsky B, Heider U. Electrochim. Acta, 2002, 47:14.
[72] Ota H, Shima K, Ue M, Yamaki J. Electrochim. Acta, 2004, 49:565.
[73] Kawamura T, Tanaka T, Egashira M, Watanabe I, Okada S, Yamaki J. Electrochemical and Solid-State Letters, 2005, 8:A459.
[74] Sun X, Lee H S, Yang X Q, McBreen J. Electrochemical and Solid-State Letters, 2002, 5:A248.
[75] Wu S H, Huang A. J. Electrochem. Soc., 2013, 160:A684.
[76] Lee Y M, Seo J E, Choi N S, Park J K. Electrochim. Acta, 2005, 50:2843.
[77] Zhang S S, Xu K, Jow T R. J. Power Sources, 2003, 113:7.
[78] Manthiram A, Chung S H, Zu C. Adv. Mater., 2015, 27:1980.
[79] Larcher D, Tarascon J M. Nature Chem., 2015, 7:19.
[80] Lin Z, Liang C. J. Mater. Chem. A, 2014, 3:936.
[81] Nazar L F, Cuisinier M, Pang Q. Mrs Bull., 2014, 39:436.
[82] Weng W, Pol V G, Amine K. Adv. Mater., 2013, 25:1608.
[83] Azimi N, Weng W, Takoudis C, Zhang Z. Electrochem. Commun., 2013, 37:96.
[84] Jeddi K, Sarikhani K, Ghaznavi M, Zendehboodi S, Chen P. J. Solid State Electrochem., 2015, 19:1161.
[85] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1):11.
[86] Grande L, Paillard E, Hassoun J, Park J B, Lee Y J, Sun Y K, Passerini S, Scrosati B. Adv. Mater., 2015, 27:784.
[87] Zhang S S, Read J. J. Power Sources, 2011, 196:2867.
[88] Zhang S S, Xu K, Read J. J. Power Sources, 2011, 196:3906.
[89] 姚桂(Yao G),段正康(Duan Z K),贺玉平(He Y P),李立南(Li L N). 精细化工(Fine Chemicals), 2012, 29(4):394.
[90] 朱玉岚(Zhu Y L),黄险峰(Huang X F),宋国强(Song G Q). 广州化工(Guangzhou Chemistry), 2012, 40(6):97.
[91] 刘新平(Liu X P), 卢碧强(Lu B Q), 吴茂祥(Wu M X), 梅林(Mei L), CN200810071778.6,2010.3.
[92] 陈剑(Chen J), 戴晓兵(Dai X B). CN 101210005, 2006.
[93] 许国荣(Xu G R), 刘冬(Liu D), 姚双开(Yao S K). CN103113345, 2013.
[94] Akiyoshi Y. WO 2009/011225, 2009.
[95] Masafumi K, Tetsuya I, Takashi I, Takashi T, Hiroshi K, Yasushi F. J. Fluorine Chem., 2003, 120:105.
[96] Yamashita S, Fukai Y. JP2000-309583,2000.
[97] Olaf B, Dirk S. WO 2004/076439, 2004.
[98] Olaf B, Dirk S, Katja P. US 7745648, 2010.
[99] Olschimke J, Seffer D, Bomkamp M. WO 2011/036283, 2011.
[100] Woo B W, Yoon S W, Lee J H. US 7268238, 2007.
[101] Lang P, Hill M, Krossing I, Woias P, Chem. Engin. J., 2012, 179, 330.
[102] 沈雪明(Shen X M),胡昌明(Hu C M).有机化学(Chinese Journal of Organic Chemistry), 1993,13:122.
[103] Ishii H, Yamada N, Fuchigami T. Tetrahedron, 2001, 57:9067.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[6] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[7] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[10] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[11] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[12] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[13] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[14] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[15] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.