中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 617-627 DOI: 10.7536/PC151207 Previous Articles   Next Articles

• Review and comments •

Water Solubilization of Upconversion Nanoparticles

Wang Yali, Li Zhen, Liu Zhihong*   

  1. College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21375098).
PDF ( 1580 ) Cited
Export

EndNote

Ris

BibTeX

Upconversion nanoparticles (UCNPs) have been widely employed in biosensing, bioimaging, photodynamic therapy and drug delivery in the past ten years. Presently, upconversion nanoparticles are obtained via thermal decomposition, co-precipitation, and solvothermal methods with oleylamine or oleic acid as surfactants always have low size dispersity, strong luminescence and disperse well in nonpolar solvents like cyclohexane. However, these kinds of nanoparticles are normally covered by a layer of oleic acid or oleylamine molecules, and hence are not suitable for directly using in biological environments. The subsequent surface modification which can turn hydrophobic nanoparticles into hydrophilic ones is therefore required. These methods include ligand exchange, ligand oxidation, amphiphilic polymer coating, silica coating, and ligand removal and so on. This account throws a critical look at the methods for surface modification and functionalization that lead to UCNPs for use in aqueous media and discusses the advantages and disadvantages of these strategies.

Contents
1 Introduction
2 Surface modification
2.1 Ligand oxidation
2.2 Ligand exchange
2.3 Amphiphilic ligand coating
2.4 Ligand removal
2.5 Layer-by-layer assembly
2.6 Silica coating and silanization
3 Bioconjugation
3.1 Covalent conjugation
3.2 Electrostatic attraction
3.3 Van der Waals Bonding
3.4 Direct attachment of biomolecule to NP surface
4 Conclusion and outlook

CLC Number: 

[1] Han S Y, Deng R R, Xie X J, Liu X G. Angew. Chem. Int. Ed., 2014, 53: 11702.
[2] Francüois A. Chem. Rev., 2004, 104: 139.
[3] Gai S L, Li C X, Yang P P, Lin J. Chem. Rev., 2014, 114: 2343.
[4] Wang J, Wang F, Wang C, Liu Z, Liu X G. Angew. Chem. Int. Ed., 2011, 50, 10369.
[5] Zhou J, Liu Z, Li F Y. Chem. Soc. Rev, 2012, 41(3): 1323.
[6] Gnach A, Bednarkiewicz A. Nano Today., 2012, 7(6): 532.
[7] Zhang F, Li J, Shan J, Xu L, Zhao D. Chem. Eur J., 2009, 15: 11010.
[8] Wang Y H, Shen P, Li C Y, Wang Y Y, Liu Z H. Anal. Chem., 2012, 84: 1466.
[9] Zhang Y W, Si R, You L P, Yan C H. J. Am. Chem. Soc., 2005, 127: 3260.
[10] Mai H X, Zhang Y W, Sun L D, Yan C H. J. Phys. Chem. C, 2007, 111: 13725.
[11] Wang F, Deng R R, Liu X G. Nature Protocols, 2007, 9: 1634.
[12] Wen H L, Zhu H, Chen X, Hung T F, Wang B L, Zhu G Y, Yu S F, Wang F. Angew. Chem. Int. Ed., 2013, 125: 1.
[13] Noah J J J, Andreas K, Dong C H, Frank C J M V. J. Am. Chem. Soc., 2012, 134: 11068.
[14] Verena M, Stefan W, Thomas H, Otto S W. Acc. Chem. Res., 2014, 47: 3481.
[15] Andreas S, Hans H G. Chem. Soc. Rev., 2014, 15: 1526.
[16] Wang C, Cheng L, Liu Y, Wang X, Ma X, Deng Z, Li Y, Liu Z. Adv. Funct. Mater., 2013, 23: 3077.
[17] Xiong L Q, Chen Z G, Tian Q W, Cao T Y, Xu C J, Li F Y. Anal. Chem., 2009, 81: 8687.
[18] Chen Z G, Chen H L, Hu H, Yu M X, Li F Y, Zhang Q, Zhou Z G, Yi T, Huang C H. J. Am. Chem. Soc., 2008, 130: 3023.
[19] Zhou H P, Xu C H, Sun W, Yan C H. Adv. Funct. Mater., 2009, 19(24), 3892.
[20] Shen J, Sun L D, Zhang Y W, Yan C H. Chem. Commun., 2010, 46(31): 5731.
[21] Yuan Y X, Wu S F, Shu F, Liu Z H. Chem. Commun., 2014, 50: 1095.
[22] Zhou J, Yu M X, Sun Y, Zhang X Z, Zhu X J, Wu Z H, Wu D M, Li F Y. Biomaterials, 2011, 32: 1148.
[23] Wu S W, Han G, Milliron D J, Aloni S, Talapin D V, Coheh B E, Schuck P J. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 10917.
[24] Marcin N, Rajiv K, Tymish Y O, Earl J B, Paras N P. Nano Lett., 2008, 8: 3834.
[25] Chen Q T, Wang X, Chen F H, Zhang Q B, Dong B, Yang H, Liu G X, Zhu Y M. J. Mater. Chem., 2011, 21: 7661.
[26] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L P, Song H W. J. Mater. Chem., 2011, 21: 6193.
[27] Tu D T, Liu L Q, Ju Q, Liu Y S, Zhu H M, Li R F, Chen X Y. Angew. Chem. Int. Ed., 2011, 50: 6306.
[28] Liu Y S, Zhou S Y, Tu D T, Chen Z, Huang M D, Zhu H M, Ma E, Chen X Y. J. Am. Chem. Soc., 2012, 134: 15083.
[29] Zhang T R, Ge J P, Hu Y X, Yin Y D. Nano Lett., 2007, 7: 3203.
[30] Liu K, Liu X M, Zeng Q H, Zhang Y L, Tu L P, Liu T, Kong X G, Wang Y H, Cao F, Saskia A G L, Maurice C G A, Zhang H. ACS Nano, 2012, 6: 4054.
[31] Liu C H, Wang H, Li X, Chen D P. J. Mater. Chem., 2009, 19: 3546.
[32] Boyer J C, Manseau M P, Murray J I, van Veggel F C J M. Langmuir, 2010, 26: 1157.
[33] Yi G S, Chou G M. Adv. Funct. Mater., 2006, 16: 2324.
[34] Nicoleta B, Fiorenzo V, René R, John A C. J. Mater. Chem., 2010, 20: 7543.
[35] Dong A G, Ye X C, Chen J, Kang Y J, Gordon T, Kikkawa J M, Murray C B. J. Am. Chem. Soc., 2011, 133: 998.
[36] Shen J, Chen G Y, Anne M V, Fan W, Osman S B, Chang C C, Han G. Adv. Optical. Mater., 2013, 1: 644.
[37] Liu R, Tu D T, Liu Y S, Zhu H M, Li R F, Zheng W, Ma E, Chen X Y. Nanoscale, 2012, 4: 4485.
[38] Esipova T V, Ye X C, Collins J E, Sakad?i? S, Mandeville E T, Murray C B, Vinogradov S A.Proc.Natl. Acad. Sci. U. S. A., 2012, 109: 20826.
[39] Stefan W, Martin K, Christian W, Josef H, Carolina C C, Verena M, Otto S. W, Wolfgang J. P, Ute R G, Thomas H Nanoscale, 2015, 7: 1403.
[40] Yao C, Wang P Y, Zhou L, Wang R, Li X M, Zhao D Y, Zhang F. Anal. Chem., 2014, 86, 9749.
[41] Li L L, Zhang R B, Yin L L, Zheng K Z, Qin W P, Selvin P R, Lu Y. Angew. Chem. Int. Ed., 2012, 51(25): 6121.
[42] Liang S, Zhang X, Wu Z N, Liu Y, Zhang H, Sun H Z, Sun H C, Yang B. CrystEngComm, 2012, 14(10): 3484.
[43] Cui S S, Chen H Y, Zhu H Y, Tian J M, Chi X M, Qian Z Y, Samuel A, Gu Y Q. J. Mater. Chem., 2012, 22: 4861.
[44] Chen B T, Dong B, Wang J, Zhang S, Xu L, Yu W, Song H W. Nanoscale, 2013, 5: 8541.
[45] Yi G S, Chow G M. Chem. Mater., 2007, 19: 341.
[46] Liu Y, Chen M, Cao T Y, Sun Y, Li C Y, Liu Q, Yang T S, Yao L M, Feng W, Li F Y. J. Am. Chem. Soc., 2013, 135: 9869.
[47] Wang C, Tao H, Cheng L, Liu Z. Biomaterials., 2011, 32: 6145.
[48] Liang C, Kai Y, Mingwang S, Shuit T L, Zhuang L. J. Phys. Chem. C, 2011, 115: 2686.
[49] Li X H, Wu Y, Liu Y, Zou X M, Yao L M, Li F Y, Feng W. Nanoscale, 2014, 6: 1020.
[50] Jiang G, Pichaandi J, Johnson N J J, Burke R D, van Veggel F C J M. Langmuir, 2012, 28: 3239.
[51] Vinegoni C, Razansky D, Hilderbrand S A, Shao F, Ntziachristos V, Weissleder R. Opt. Lett., 2009, 34(17): 2566.
[52] Shan J N, Stephanie J B, Hu G H, Yao N, Kang Y B, Ju Y G, Robert K P. Adv. Funct. Mater., 2011, 21(13): 2488.
[53] Bogdan N, Vetrone F, Ozin G A, Capobianco J A. Nano Lett., 2011, 11: 835.
[54] Wang Y F, Sun L D, Xiao J W, Feng W, Zhou J C, Shen J, Yan C H. Chem. Eur. J., 2012, 18: 5558.
[55] Li Z, Lv S W, Wang Y L, Chen S Y, Liu Z H. J. Am. Chem. Soc., 2015, 137: 3421.
[56] Li Z, Liang T, Lv S W, Zhuang Q G, Liu Z H. J. Am. Chem. Soc., 2015, 137: 11179.
[57] Wang L Y, Yan R X, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2005, 44: 6054.
[58] Niagara M I, Li Z Q, Ye L, Eugene W S, Ratha M, Paul C L H, Zhang Y. Biomaterials, 2009, 30(28): 5104.
[59] Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26: 62.
[60] Noah J J J, Neralagatta M S, John C B, Frank C J M V. Nanoscale, 2010, 2: 771.
[61] Rantanen T, Jarvenpaa M L, Vuojola J, Arppe R, Kuningas K, Soukka T. Analyst, 2009, 134: 1713.
[62] Masih D, Thomas N. Chem. Commun., 2006, 7: 776.
[63] Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K. ACS Nano, 2009, 3: 1580.
[64] Li Z Q, Zhang Y. Angew. Chem. Int. Ed., 2006, 45: 7732.
[65] Lu H C, Yi G S, Zhao S Y, Chen D P, Guo L H, Cheng J. J.Mater. Chem., 2004, 14: 1336.
[66] Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H. Nano Lett., 2004, 4: 2191.
[67] Jalil R A, Zhang Y. Biomaterials, 2008, 29: 4122.
[68] Rahul P B, Lisa R H, Tan W H. Langmuir, 2006, 22: 4357.
[69] Yuan F Y, Lee Y H, Muthu K G, Guan Z P, Zhang Y, Xu Q H. Nanoscale, 2012, 4: 5132.
[70] Yang Y M, Shao Q, Deng R R, Wang C, Teng X, Cheng K, Cheng Z, Huang L, Liu Z, Liu X G, Xing B G. Angew. Chem. Int. Ed., 2012, 51: 3125.
[71] Qian H S, Guo H C, Ho P C L, Mahendran R, Zhang Y. Small, 2009, 5: 2285.
[72] Hou Z Y, Li C X, Ma P G, Li G G, Cheng Z Y, Peng C, Yang D M, Yang P P, Lin J. Adv. Funct. Mater., 2011, 21: 2356.
[73] Gai S L, Yang P P, Li C X, Wang W X, Dai Y L, Niu N, Lin J. Adv. Funct. Mater., 2010, 20: 1166.
[74] Xu Z H, Li C X, Ma P A, Hou Z Y, Yang D M, Kang X J, Lin J. Nanoscale, 2011, 3: 661.
[75] Jiang S, Zhang Y. Langmuir, 2010, 26: 6689.
[76] Hu H, Xiong L Q, Zhou J, Li F Y, Cao T Y, Huang C H. Chem. Eur. J., 2009, 15: 3577.
[77] Raphaela B L, Tero S, Otto S W, Hans H G. Nanotechnology, 2012, 23: 485103.
[78] Liu J N, Bu W B, Pan L M, Shi J L. Angew. Chem. Int. Ed., 2013, 52: 4375.
[79] Mader H S, Link M, Achatz D E, Uhlmann K, Li X H, Wolfbeis D S. Chem. Eur. J., 2010, 16: 5416.
[80] Sayed M S, Reham A, Thomas H, Otto S W. Nanopart. Res., 2011, 13: 4603.
[81] Zako T, Nagata H, Terada N. Biochem. Biophys. Res. Commun., 2009, 381(1): 54.
[82] Chen G Y, Qiu H L, Paras N P, Chen X Y. Chem. Rev., 2014, 114 (10): 5161.
[83] Wang Y H, Bao L, Liu Z H, Pang D W. Anal. Chem., 2011, 83: 8130.
[84] Zhang C L, Yuan Y X, Zhang S M, Wang Y H, Liu Z H. Angew. Chem. Int. Ed., 2011, 50: 1.
[85] Cheng Z Y, Li C X, Lin J. Biomaterials, 2013, 34: 1601.
[86] Ju Q, Tu D T, Liu Y S, Li R F, Zhu H M, Chen J C, Chen Z, Huang M D, Chen X Y. J. Am. Chem. Soc., 2012, 134: 1323.
[87] Wang Y H, Wu Z J, Liu Z H. Anal. Chem., 2012, 84: 1466.
[88] Wang M, Chen Z, Zheng W, Zhu H M, Lu S, Ma E, Tu D T, Zhou S Y, Huang M D, Chen X Y. Nanoscale, 2014, 6: 8274.
[89] Hans H G, Reham A, Sayed M S, Otto S W. Adv. Mater., 2011, 23: 1652.
[90] Zheng W, Zhou S Y, Chen Z, Hu P, Liu Y S, Tu D D, Zhu H M, Li R F, Huang S Y, Chen X Y. Angew. Chem. Int. Ed., 2013, 52: 6671.
[91] Wang Y H, Wu Z J, Liu Z H. Anal. Chem., 2013, 85(1): 258.
[92] Cui J W, Yan Y, Wang Y J, Frank C. Adv. Funct. Mater., 2012, 22(22): 4718.
[93] Yang Y M, Liu F, Liu X G. Nanoscale, 2013, 5(1): 231.
[94] Xiao Y, Zeng L Y, Xia T, Wu Z J, Liu Z H. Angew. Chem. Int. Ed., 2015, 54: 5323.
[95] Wang M, Chen Z, Zheng W, Zhu H M, Lu S, Ma E, Tu D T, Zhou S Y, Huang M D, Chen X Y. Nanoscale, 2014, 6: 8274.
[96] Li L L, Wu P W, Hwang K, Lu Y. J. Am. Chem. Soc., 2013, 135: 2411.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[7] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[8] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[9] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[10] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[11] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[12] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[13] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[14] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[15] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.