中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 637-646 DOI: 10.7536/PC151136 Previous Articles   Next Articles

• Review and comments •

Applications of the Up and Down Conversion in Dye Sensitized Solar Cells

Jiang Ling1,2, Que Yaping1, Ding Yong1, Hu Linhua1, Zhang Changneng1*, Dai Songyuan1,3*   

  1. 1. Key Laboratory of Novel Thin-Film Solar Cells, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing 102206, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21173228, 21173227, U1205112) and the National High Technology Research and Development Program of China (No.2015AA050602).
PDF ( 1512 ) Cited
Export

EndNote

Ris

BibTeX

The up and down conversion technology can convert the infrared and ultraviolet light into the visible light in the range of 300~800 nm, which can solve the energy loss caused by spectral mismatch, and the absorption spectrum of the cell can be expanded to improve the light utilization and conversion efficiency. The rare earth ion is often used as the center ion of the up and down conversion materials because of the special structure of the energy level and the high luminous efficiency. In recent years, the center ion of up conversion is mainly Er3+, Tm3+and the sensitization center is Yb3+ with longer excited state lifetime. Tb3+, Eu3+ and Sm3+ have charge transfer absorption band in the ultraviolet region, which can be easily excited by ultraviolet light and the emission spectrum mainly located in the visible region, so they are often used as the center ion of down conversion.The host is usually fluoride and the materials with high crystallinity, small particle size and uniform distribution were prepared by hydrothermal method. At present, the research on up and down conversion applied to DSC is getting more and more important. In this paper, we mainly discuss the application of up and down conversion in DSC, and prospect the future development direction.

Contents
1 Introduction
2 Up and down conversion technology
2.1 Luminescence mechanism of up and down conversion
2.2 Host of up and down conversion luminescent materials
2.3 Preparation method of luminescent materials
3 Application of up and down conversion in dye sensitized solar cells
3.1 Energy loss in solar cells
3.2 Application modeling of up and down conversion in solar cell
3.3 Application of up and down conversion luminescent materials in DSC
4 Conclusion and outlook

CLC Number: 

[1] Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M. Nat. Chem., 2014, 6: 242.
[2] Ding Y, Mo L E, Tao L, Ma Y M, Hu L H, Huang Y, Fang X Q, Yao J X, Xi X W, Dai S Y. J. Power Sources, 2014, 272: 1046.
[3] 桃李(Tao L), 霍志鹏(Huo Z P), 潘旭(Pan X),张昌能(Zhang C N), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2013, 25(6): 990.
[4] Liu F, Zhu J, Hu L H, Zhang B, Yao J X, Nazeeruddin M K, Grätzel M, Dai S Y. J. Mater. Chem. A, 2015, 3: 6315.
[5] Wu G H, Kong F T, Zhang Y H, Zhang X X, Li J Z, Chen W C, Liu W Q, Ding Y, Zhang C N, Zhang B, Yao J X, Dai S Y. J. Phys. Chem. C, 2014, 118: 8756.
[6] Wu G H, Kong F T, Li J Z, Fang X Q, Li Y, Dai S Y. J. Power Sources, 2013, 243: 131.
[7] 武国华(Wu G H), 孔凡太(Kong F T), 翁坚(Weng J), 戴松元(Dai S Y), 奚小网(Xi X W), 张昌能(Zhang C N).化学进展(Progress in Chemistry), 2011, 23(9): 1929.
[8] Hamann T W, Jensen R A, Martinson A B F, Ryswyk H V, Hupp J T. Energy Environ. Sci., 2008, 1: 66.
[9] Wang Z S, Yamaguchi T, Sugihara H, Arakawa H. Langmuir, 2005, 21: 4272.
[10] Hara K, Dan-oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H. Langmuir, 2004, 20: 4205.
[11] 徐东勇(Xu D Y), 臧竞存(Zang J C). 人工晶体学报(Journal of Artificial Crystal), 2001, 30(2): 203.
[12] 杨建虎(Yang J H), 戴世勋(Dai S X), 姜中宏(Jiang Z H).物理学进展(Progress in Physics), 2003, 23(3): 284.
[13] Auzel F. Chem. Rev., 2004, 104(1): 139.
[14] Gamelin D R, Güdel H U. Transition Metal & Rare Earth Compounds, 2001, 214: 1.
[15] Gamelin D R, Güdel H U.Cheminform, 2000, 33: 235.
[16] Bloembergen N. Phys. Rev. Lett., 1959, 2: 84.
[17] Chivian J S, Case W E, Eden D D. Appl. Phys. Lett., 1979, 35: 124.
[18] Wegh R T, Donker H, Oskam K D, Meijerink A. Science, 1999, 283: 663.
[19] 孙家跃(Sun J Y), 杜海燕(Du H Y), 胡文祥(Hu W X). 固体发光材料(Solid Luminescent Material). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.
[20] Trupke T, Green M A, Würfel P. J. Appl. Phys., 2002, 92: 1668.
[21] Trupke T, Green M A, Würfel P. J. Appl. Phys., 2002, 92: 4117.
[22] 何捍卫(He H W), 周科朝(Zhou K C), 熊翔(Xiong X), 黄伯云(Huang B Y). 中国稀土学报(Journal of the Chinese Society of Rare Earth), 2003, 21(2): 123.
[23] An L, Zhang J, Liu M, Wang S W. J. Lumin., 2007, 122/123: 125.
[24] Gudel H U, Pollnau M. J. Alloy. Compd., 2000, 307: 303
[25] Riedener T, Kramer K, Gudel H U. Inorg. Chem., 1995, 34: 2749
[26] Zhong S L, Wang S J, Xu H L, Li C G, Huang Y X, Wang S P, Xu R. Mater. Lett., 2009, 63: 530.
[27] Wang G F, Qin W P, Zhang J S, Zhang J S, Wang Y, Cao C Y, Wang L L, Wei G D, Zhu P F, Kim R. J. Fluorine Chem., 2008, 129: 621.
[28] Qin X P, Zhou G H, Yang H, Yang Y, Zhang J, Wang S W. J. Alloy.Compd., 2010, 493: 672.
[29] Gai S L, Yang P P, Wang D, Li C X, Niu N, He F, Li X B. CrystEngComm, 2011, 13: 5480.
[30] Das S, Mandal K C. Mater. Lett., 2012, 66: 46.
[31] Weissman S I. J. Chem. Phys., 1942, 10: 214.
[32] Wang Y, Jiang Z H, Lv Y G, Zhang Y J, Ma D Y, Zhang F J, Tan B. Synthetic Met., 2011, 161: 655.
[33] Chen B T, Dong B, Wang J, Zhang S, Xu L, Yu W, Song H. Nanoscale, 2013, 5: 8541.
[34] Lin J, Yu M, Lin C K, Liu X M. J. Phys. Chem. C, 2007, 111: 5835.
[35] Guo H, Dong N, Yin M, Zhang W P, Lou L R, Xia S D. J. Phys. Chem. B, 2004, 108: 19205.
[36] Matthews L R, Knobbe E T. Chem. Mater. 1993, 5: 1697.
[37] Yang C H, Yang G F, Pan Y X, Zhang Q Y. J. Fluoresc., 2009, 19: 105.
[38] Wei Z G, Sun L D, Liao C S, Jiang X C, Yan C H, Tao Y, Hou X Y, Ju X. J. Appl. Phys., 2003, 93: 9783.
[39] Zhang J, Wang S W, Rong T J, Chen L D. J. Am. Ceram. Soc., 2004, 87: 1072.
[40] Li Q, Gao L, Yan D S. Nanostruct. Mater., 1997, 8: 825.
[41] Chen L M, Liu Y N, Huang K L. Mater. Res. Bull., 2006, 41: 158.
[42] Kong L B, Zhang T S, Ma J, Boey F. Prog. Mater. Sci., 2008, 53: 207.
[43] Richards B S. Sol. Energ. Mat. Sol. C., 2006, 90: 2329.
[44] Green M A, Emery K, Hishikawa Y, Warta W. Prog. Photovolt: Res. Appl., 2009, 17: 320.
[45] Shockley W, Queisser H J. J. Appl. Phys., 1961, 32: 510.
[46] Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Švr?ek V, Cañizo C D, Tobias I. Sol. Energ. Mat. Sol. C., 2007, 91: 238.
[47] Wolf M. Proceedings of the IRE, 1960, 48: 1246.
[48] Gibart P, Auzel F, Guillaume J C, Zahraman K. Jpn. J. Appl. Phys., 1996, 35: 4401.
[49] Werner J H, Kolodinski S, Queisser H J. Phys. Rev. Lett., 1994, 72: 3851.
[50] Würfel P. Sol. Energ. Mat. Sol. C., 1997, 46: 43.
[51] van der Ende B M, Aarts L, Meijerink A. Phys. Chem. Chem. Phys., 2009, 11: 11081.
[52] Zhang Q Y, Huang X Y. Prog. Mater. Sci., 2010, 55: 353.
[53] Liu S M, Chen W, Wang Z G. J. Nanosci. Nanotechnol., 2010, 10: 1418.
[54] Trupke T, Green M A, Wurfel P. Appl. Phys. Lett., 2002, 92(7): 4117.
[55] De Wild J, Meijerink A, Rath J K, van Sark W G J H M, Schropp R E I. Sol. Energ. Mat. Sol. C., 2010, 94: 1919.
[56] Wild J D, Rath J K, Meijerink A, van Sark W G J H M, Schropp R E I. Sol. Energ. Ma. Sol. C., 2010, 94: 2395.
[57] Shan G B, Demopoulos G P. Adv. Mater., 2010, 22: 4373.
[58] Badescu V, Vos A D. J. Appl. Phys., 2007, 102: 073102.
[59] Shpaisman H, Niitsoo O, Lubomirsky I, Cahen D. Sol. Energ. Mat. Sol. C., 2008, 92: 1541.
[60] Shalav A, Richards B S, Green M A. Sol. Energ. Mat. Sol. C., 2007, 91: 829.
[61] Wild J D, Meijerink A, Rath J K, van Sark W G J H M, Schropp R E I. Energ. Environ. Sci., 2011, 4: 4835.
[62] Ramasamy P, Kim J. Chem. Commun., 2014, 50: 879.
[63] 李树全(Li S Q), 林建明(Lin J M),吴季怀(Wu J H),张秀坤(Zhang X K), 李彪(Li B), 徐波(Xu B).功能材料(Functional Material), 2009, 40(1): 82.
[64] Xie G X, Lin J M, Wu J H, Lan Z, Li Q H, Xiao Y M, Yue G T, Yue H F, Huang M L. Chinese Sci. Bull., 2011, 56: 96.
[65] Wu X, Lu G Q, Wang L Z. Adv. Energy Mater., 2013, 3: 704.
[66] Shan G B, Demopoulos G P. Adv. Mater., 2010, 22: 4373.
[67] Wu J H, Wang J L, Lin J M, Lan Z, Tang Q W, Huang M L. Adv. Energy Mater., 2012, 2: 78.
[68] 范乐庆(Fan L Q), 李兆磊(Li Z L), 黄昀昉(Huang Y F), 林建明(Lin J M), 吴季怀(Wu J H).无机化学学报(Chinese Journal of Inorganic Chemistry), 2015, 31(1): 147.
[69] Liang L L, Liu Y M, Bu C H, Guo K M, Sun W W, Huang N, Peng T, Sebo B, Pan M M, Liu W, Guo S S, Zhao X Z. Adv. Mater., 2013, 25: 2174.
[70] Wang W, Huang W J, Ni Y R, Lu C H, Xu Z Z. ACS Appl. Mater. Interfaces, 2014, 6: 340.
[71] Kay A, Grätzel M. Chem. Mater., 2002, 14: 2930.
[72] Liu J F, Yao Q H, Li Y D. Appl. Phys. Lett., 2006, 88: 173119.
[73] Huang X Y, Wang J X, Yu D C, Ye S, Zhang Q Y, Sun X W. J. Appl. Phys., 2011, 109: 113526.
[74] Hong C K, Ko H S, Han E M, Yun J J, Park K H. Nanoscale Res. Lett., 2013, 8: 3975.
[75] Shen J, Li Z Q, Cheng R, Luo Q, Luo Y D, Chen Y W, Chen X H, Sun Z, Huang S M. ACS Appl. Mater. Interfaces, 2014, 6: 17454
[76] Yao N N, Huang J Z, Fu K, Liu S Y, Dong E, Wang Y H, Xu X J, Zhu M, Cao B Q. J. Power Sources, 2014, 267: 405
[77] 王江丽(Wang J L), 林建明(Lin J M), 吴季怀(Wu J H), 兰章(Lan Z), 范乐庆(Fan L Q), 黄韵昉(Huang Y F), 唐子颖(Tang Z Y).厦门大学学报: 自然科学版(Journal of Xianmen University: Natural Science), 2011, S1(B09): 98.
[78] Wu J H, Wang J L, Lin J M, Xiao Y M, Yue G T, Huang M L, Lan Z, Huang Y F, Fan L Q, Yin S, Sato T S. Sci. Rep., 2013, 3: 2058.
[79] Hafez H, Saif M, Abdel-Mottaleb M S A. J. Power Sources, 2011, 196: 5792
[80] Hong B C, Kawano K. Sol. Energ. Mat. Sol. C., 2003, 80: 417.
[81] Kawano K, Hong B C, Sakamoto K, Tsuboi T, Seo H J. Opt. Mater., 2009, 31: 1353.
[82] Wang L J, Li Y Y, Hao H S, Guo W H, Su Q, Jin S S, Qin L, Gao W Y, Liu G S, Hu Z Q. J. Chim. Ceram. Soc. (Eng.), 2015, 2: 103
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[6] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[7] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[8] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[9] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[10] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[11] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[12] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[13] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[14] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.
[15] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.