中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 934-941 DOI: 10.7536/PC151121 Previous Articles   Next Articles

• Review and comments •

Advanced Reduction Processes: A Novel Technology for Water Treatment

Yang Shiying1,2,3*, Zhang Yitao1,3, Zheng Di1,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21107101).
PDF ( 1767 ) Cited
Export

EndNote

Ris

BibTeX

During the past three years, a new group of water and wastewater treatment technologies, called advanced reduction processes (ARPs), has been developed by combining activation methods with reducing reagents to yield reducing free radicals, including hydrated electron (eaq-) and hydrogen atom (H·), etc. The most commonly used activation method is UV, and the reducing agent is usually sulfite (SO32-) or dithionite (S2O42-). The produced reducing radicals can donate an unpaired electron to a target contaminant and thereby chemically reduce it. Many kinds of stubborn contaminants can be degraded by ARPs, such as chlorinated organic compounds, fluorinated compounds and some inorganic pollutants (perchlorate, nitrate, bromate, etc.). So this novel process has a bright future in control of environmental pollutions. However, the ARPs are short of systematic research now. In order to promote the development of ARPs, the present research situation and prospect are reviewed in this paper. And the existing problems are also presented based on the analysis of its basic principles.

Contents
1 Introduction
2 Reaction mechanism of ARPs
2.1 Production of free radicals
2.2 The reaction between contaminant and free radicals
3 The research progress of ARPs
3.1 Influencial factors
3.2 Mechanism of degradation
3.3 Kinetic model
4 Conclusion and prospection
4.1 A further study of factors
4.2 Making clear of the degradation mechanism
4.3 Evaluating removal efficiency of different senior reduction technology for different pollutants
4.4 The extension of ARPs

CLC Number: 

[1] Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39: 1338.
[2] Wang C B, Zhang W X. Environ. Sci. Technol., 1997, 7: 2154.
[3] Bae S J, Hanna K. Environ. Sci. Technol., 2015, 49: 10536.
[4] Angela M M, Corinne H D L, Thomas M. Y. Environ. Sci. Technol., 2003, 37: 3189.
[5] Sohn K, Kang SW, Ahn S, Woo M, Yang SK. Environ. Sci. Technol., 2006, 40: 5514.
[6] Sushil R K, Bruce M, Laurent C, Heechul C. Environ. Sci. Technol., 2005, 39: 1291.
[7] Sushil R K, Grenèche J M, Choi H. Environ. Sci. Technol., 2006, 40: 2045.
[8] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z),王萍(Wang P), 刘玉红(Liu Y H), 王茂东(Wang M D). 化学进展(Progress in Chemistry). 2008, 9(20): 1433.
[9] Yu H, Nie E, Xu J, Yana S W, Cooper W J, Song W H. Water Res., 2013, 47: 1909.
[10] Li X C, Ma J, Liu G F, Fang J Y, Yue S Y, Guan Y H, Chen L W, Liu X W. Environ. Sci. Technol., 2012, 46: 7342.
[11] Neta P, Huie R E, Harriman A. Phys. Chem., 1987, 91: 1606.
[12] Hijnen W A M, Beerendonk E F, Medema G J. Water Res., 2006, 40: 3.
[13] 王亚军(Wang Y J), 姜丽娟(Jiang L J), 冯长根(Feng C G). 化学进展(Progress in Chemistry), 2013, 12(25): 1999.
[14] 张锋振(Zhang F Z), 吴超飞(Wu C F), 胡芸(Hu Y), 韦朝海(Wei C H). 化学进展(Progress in Chemistry), 2014, 26(6): 1079.
[15] Vellanki B P, Batchelor B, Abdel-Wahab A. Environ. Eng. Sci., 2013, 30: 264.
[16] Liu X, Yoon S, Batchelor B, Abdel-Wahab A. Sci. Total Environ., 2013, 454: 578.
[17] Liu X, Yoon S, Batchelor B, Abdel-Wahab A. Chem. Eng. J., 2013, 215: 868.
[18] Liu X, Vellanki B P, Batchelor B, Abdel-Wahab A. Chem. Eng. J., 2014, 237: 300.
[19] Yoon S, Han D S, Liu X, Batchelor B. Environ. Chem. Eng., 2014, 2: 731.
[20] Qu Y, Zhang C J, Chen P, Zhou Q, Zhang W X. Chemosphere, 2014, 107: 218.
[21] Vellanki B P, Batchelor B. J. Hazard. Mater., 2013, 262: 348.
[22] Bensalah N, Nicola R, Abdel-Wahab A. Environ. Sci. Technol., 2014, 11: 1733.
[23] Jung B, Nicola R, Batchelor B, Abdel-Wahab A. Chemosphere, 2014, 117: 663.
[24] Liu X W, Zhang T Q, Wang L L, Shao Y, Fang L. Chem. Eng. Sci., 2015, 260: 740.
[25] Song Z, Tang H Q, Wang N, Zhu L H. J. Hazard. Mater., 2013, 262: 332.
[26] Jung B, Farzaneh H, Khodary A, Abdel-Wahab A. Chem. Eng. J., 2015, 3: 2194.
[27] Duan Y, Batchelor B. J. Environ. Sci. Heal., Part A, 2014, 49: 731.
[28] Liu X W, Zhang T Q, Shao Y. Clean-Soil, Air, Water, 2014, 42: 1370.
[29] Liu C S, Shih K, Wei L, Wang F, Li F B. Chemosphere, 2011, 85: 1438.
[30] Shah N S, Khan J A, Nawaz S, Khan H M. J. Hazard. Mater., 2014, 278: 40.
[31] Zhang Z J, Wang X N, Xue Y C, Li H J, Dong W B. Chem. Eng. J., 2015, 263: 186.
[32] Siefermann K R, Abel B. Angew. Chem. Int. Ed., 2011, 50: 5264.
[33] Handbook of Chemistry and Physics. 92nd ed. BR: Chemical Rubber Compan, 2011.
[34] Atkins P. Physical Chemistry. 6th ed. NY: W.H. Freeman and Company, 1997.
[35] Ohlsson P I, Blanck J, Ruckpaul K. Biol. Chem., 1986, 158: 451.
[36] 魏宝明(Wei B M).金属腐蚀理论及应用(Metal Corrosion Theory and Application),北京:化学工业出版社(Beijing: Chemical Industry Press), 1984.
[37] CRC Handbook of Chemistry and Physics, 87th ed. Boca Raton, FL: CRC Press, 2006.
[38] Brandt C, Van Eldik R. Chem. Rev., 1995, 95: 119.
[39] Park H, Vecitis C D, Cheng J, Dalleska N F, Mader B T, Hoffmann M R. Photochem. Photobiol. Sci., 2011, 10: 1945.
[40] Bu L J, Zhou S Q, Shi Z, Deng L, Li G C, Yi Q H, Gao N Y. Environ. Sci. Pollut. R., 2016, 23: 2848.
[41] Devonshire R, Weiss J J. Phys. Chem., 1968, 72: 3815.
[42] Dogliotti L, Hayon E. Phys. Chem., 1968, 72: 1800.
[43] Jeevarajan A S, Fessenden R W. Phys. Chem., 1989, 93: 3511.
[44] Fischer M, Warneck P. Phys. Chem., 1996, 100: 15111.
[45] Neta P, Huie R E. Environ. Health. Perspect., 1985, 64: 209.
[46] Xie L, Shang C. Chemosphere, 2006, 64: 919.
[47] Buxton G V, Greenstock C L, Helman W P, Ross A B. Phys. Chem. Ref., 1988, 17: 513.
[48] Hayon E, Treinin A, Wilf J. J. Am. Chem. Soc., 1972, 94: 47.
[49] Makarov S V. Uspekhi Khimii., 2001, 70: 1005.
[50] Kenna C E, Gutheil W G, Song W. Biochim. Biophys. Acta, 1991, 1075: 109.
[51] Pukhovskaya S G, Guseva L Z, Makarov S V, Naidenko E V. Anal. Chem., 2005, 60: 21.
[52] Song Z, Wang N, Zhu L H, Huang A Z, Zhao X L, Tang H Q. Chem. Eng. J. 2012, 198: 379.
[53] Shirom M, Stein G. Chem. Phys. 1971, 55: 3372.
[54] Buxton G V, Greenstock C L, Helman W P. Phys.Chem. 1988, 17: 513.
[55] Siddiqui M S, Amy G L, Cooper W J, Kurucz C N, Waite T D, Nickelsen M G. J. Am. Water Works Ass., 1996, 88: 90.
[56] Siddiqui M. J. Am.Water Works Assoc., 1994, 10: 81.
[57] Water Environment Federation. Industrial Wastewater Management, Treatment, and Disposal, 3th ed, NY: McGraw-Hill, 2008.
[58] Idris A, Hassan N, Rashid R, Ngomsik A F. J. Hazard. Mater., 2011, 186: 629.
[59] Moussavi G, Jiani F, Shekoohiyan S. Sep. Purif. Technol., 2015, 151: 218.
[60] Botlagudurua V S V, Batchelor B, Abdel-Wahab A. J. Water Pro. Eng., 2015, 5: 76.
[61] Zhang C Y, Qu Y, Zhao X Y, Zhou Q. Clean-Soil, Air, Water, 2015, 43: 223.
[62] Li X C, Fang J Y, Liu G F, Zhang S J, Pan B C, Ma J. Water Res., 2014, 62: 220.
[1] Zhang Qian, Zhu Yanhong, Xu Huibi, Yang Xiangliang. Multifunctional Nanoparticle-Based Adjuvants Used in Cancer Vaccines [J]. Progress in Chemistry, 2015, 27(2/3): 275-285.
[2] Wei Wei, Liu Jingcheng, Li Hu, Mu Qidao, Liu Xiaoya. Development and Application of Microelectronic Photoresist [J]. Progress in Chemistry, 2014, 26(11): 1867-1888.
[3] Zhang Fengzhen, Wu Chaofei, Hu Yun, Wei Chaohai. Photochemical Degradation of Halogenated Organic Contaminants [J]. Progress in Chemistry, 2014, 26(06): 1079-1098.
[4] Chen Renjie, He Zhouying, Wu Feng. Lithium Organic Borate Salt and Sulfite Functional Electrolytes [J]. Progress in Chemistry, 2011, 23(0203): 382-389.
[5] . Chiral Polydiacetylene Assembles [J]. Progress in Chemistry, 2010, 22(10): 2014-2023.
[6] . Exploring “Sweet”Vaccines—Synthetic Oligosaccharides for Cancer Immunotherapy [J]. Progress in Chemistry, 2010, 22(09): 1753-1759.
[7] Zhu Hongxiang1,Chai Xinsheng1,2**,Wang Shuangfei1,Song Hainong1,Zhu Junyong3. Attenuated Total Reflection UV/Vis Spectroscopic Applications [J]. Progress in Chemistry, 2007, 19(0203): 414-419.
[8] Chu Xiaoli*,Yuan Hongfu,Lu Wanzhen. Progress and Application of Spectral Data Pretreatment and Wavelength Selection Methods in NIR Analytical Technique [J]. Progress in Chemistry, 2004, 16(04): 528-.