中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 697-710 DOI: 10.7536/PC151118 Previous Articles   Next Articles

• Review and comments •

Microcantilever Biosensors

Dai Yingping1, Ji Zhengping1, Wang Chengyin1*, Hu Xiaoya1*, Wang Guoxiu2   

  1. 1. College of Chemistry and Engineering, Yangzhou University, Yangzhou 225002;
    2. School of Mathematical and Physical Sciences, University of Technology Sydney, NSW 2007, Australia
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21375116), the National High Teehnology Research and Development Program of China (No.2009AA03Z331) and the Research Program on Analytical Methods and Techniques on the Shared Platform of Large-Scale Instruments and Equipment in Jiangsu Province(BZ201409).
PDF ( 3022 ) Cited
Export

EndNote

Ris

BibTeX

Microcantilever biosensors based on atomic force microscope have the advantages of label-free, rapid, real-time, and high sensitivity detection features. Therefore, microcantilever biosensors can be applied in the fields of biomedicine, environmental monitoring, food production and military defenses. Microcantilever biosensors have become the focus of scientific research. In this paper, we review the working principle, excitation method and detection mechanism of microcantilever biosensors. Preview reviews about the microcantilever biosensors mainly focuse on the progress of applications, but lack of comprehensive and systematic introduction on detection methods. Herein, we not only systematically analyze eight detection methods, but also introduce several typical sizes, appearance and "heat mode" of microcantilever biosensors. So far, these have not been reported in literatures. In order to realize specific detection and improve sensitivity of microcantilever sensors, we summarize the surface modification methods of microcantilever sensors and review the latest applications of microcantilever biosensors. Furthermore, we introduce a new kind of self-actuating and self-sensing microcantilever biosensors. The prospective of microcantilever biosensors is also discussed in this paper.

Contents
1 Introduction
2 Microcantilever biosensors
3 The brief introduction of microcantilever beam
4 Microcantilever working mode
4.1 Dynamic working mode
4.2 Static working mode
4.3 Heat mode
5 Excitation methods of the microcantilever biosensors
6 Detection methods of the microcantilever biosensors
6.1 Optical lever
6.2 Optical interferometry
6.3 Piezoresistive method
6.4 Piezoelectric method
6.5 Capacitance method
6.6 Electron tunneling method
6.7 Other methods
7 Surface biofunctionalization
8 Application of the microcantilever biosensors
8.1 DNA hybridization detection
8.2 Pathogens detection
8.3 Protein detection
8.4 Small-molecular and drug testing
8.5 Biological warfare agent detection
8.6 Self-actuating and self-sensing microcantilever biosensors
9 Conclusion and outlook

CLC Number: 

[1] Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56 (9): 930.
[2] Muller D J, Dufrene Y F. Trends Cell Biol., 2011, 21(8): 461.
[3] Dufrene Y F, Martinez-Martin D, Medalsy I, Alsteens D, Muller D J. Nat. Methods, 2013, 10 (9): 847.
[4] Ando T. Curr. Opin. Struct. Biol., 2014, 28: 63.
[5] Kirmse R, Otto H, Ludwig T. J. Cell Sci., 2011, 124 (11): 1857.
[6] Wildling L, Rankl C, Haselgrubler T, Gruber H J, Holy M, Newman A H, Zou M F, Zhu R, Freissmuth M, Sitte H H, Hinterdorfer P. J. Biol. Chem., 2012, 287 (1): 105.
[7] 李密 (Li M), 刘连庆 (Liu L Q), 席宁 (Xi N), 王越超(Wang Y C).生物化学与物理进展 (Progress in Biochemistry and Biophysics), 2015, 42 (8): 697.
[8] Milhiet P E, Dosset P, Godefro C, Grimellec C L, Guigner J M, Larquet E, Ronz F, Manin C. Biochim., 2011, 93: 254.
[9] Lyubchenko Y L, Shlyakhtenko L S, Ando T. Methods, 2011, 54 (2): 274.
[10] Kumano S, Murakoshi M, Iida K, Hamana H, Wada H. FEBS. Lett., 2010, 584: 2872.
[11] Eita M. Soft Matt., 2011, 7 (2): 709.
[12] Bodenhofer K, Hierlemann A, Noetzel G, Weimar U, Gopel W. Anal. Chem., 1996, 68 (13): 2210.
[13] Liao C D, Chao K H, Tsai J C. IEEE J. Quantum Elect., 2010, 46 (9): 1268.
[14] Chen Y, Xu P C, Liu M, Li X X. Microelectron. Eng., 2010, 87 (12): 2468.
[15] Garcia-Romeo D, Pellejero I, Urbiztondo M A, Sese J, Pina M P, Martinez P A, Calvo B, Medrano N. Sensor Actuat. B-Chem., 2014, 200: 31.
[16] Alvarez M, Lechuga L M. Analyst, 2010, 135 (5) : 827.
[17] Cai B J, Wang S T, Huang L, Ning Y, Zhang Z Y, Zhang G J. ACS Nano, 2014, 8 (3): 2632.
[18] 伍周玲 (Wu Z L), 燕冰宇 (Yan B Y), 梁东军 (Liang D J), 郭明(Guo M), 张新鸽 (Zhang X G). 中国食品学报 (Journal of Chinese Institute of Food Science and Technology), 2015, 15 (3) : 166.
[19] 蔡冰洁 (Cai B J), 张国军 (Zhang G J). 检验医学 (Laboratory Medicine), 2015, 30 (6): 650.
[20] Vo-Dinh T, Cullum B. Fresenius J. Anal. Chem., 2000, 366 (6): 540.
[21] Clark L, Lyons C. Ann NY Acad. Sci., 1962, 102: 29.
[22] Updike S J, Hicks G P. Nature, 1967, 214 (5092): 986.
[23] Hwang K S, Jeon H K, Lee S M, Kim S K, Kim T S. J. Appl. Phys., 2009, 105 (10): 102017.
[24] Ghosh S, Mishra S, Mukhopadhyay R. J. Mater. Chem. B, 2014, 2 (8): 960.
[25] Liu F, Zhang Y, Ou-Yang Z C. Biosens. Bioelectron., 2003, 18 (6): 655.
[26] Goeders K M, Colton J S, Bottomley L A. Chem. Rev., 2008, 108 (2): 522.
[27] Wang J H, Morton M J, Elliott C T, Karoonuthaisiri N, Segatori L, Biswal S L. Anal. Chem., 2014, 86 (3): 1671.
[28] Patil S J, Adhikari A, Baghini M S, Rao V R. Sensor Actuat. B-Chem., 2014, 203: 165.
[29] Carrascosa L G, Moreno M, Alvarez M, Lechuga L M. Trac-Trend Anal. Chem., 2006, 25 (3): 196.
[30] Ramos D, Calleja M, Mertens J, Zaballos A, Tamayo J. Sensors, 2007, 7 (9) : 1834.
[31] 侯慧 (Hou H). 南昌大学硕士学位论文(Master Dissertation of Nanchang University), 2013.
[32] 周雄图 (Zhou X T), 张永爱 (Zhang Y A), 郭太良 (Guo T L). 光电子 ·激光 (Journal of Optoelectronics·Laser), 2013, 24 (11): 2055.
[33] 唐洁 (Tang J).天津大学硕士学位论文(Master Dissertation of Tianjin University), 2005.
[34] Nordstrom M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-Jakobsen M, Boisen A. Sensors, 2008, 8(3) : 1595.
[35] 霍寅龙 (Huo Y L), 王宇新 (Wang Y X), 徐英明 (Xu Y M), 丁健(Ding J). 医学研究与教育 (Medical Research and Education), 2012, 29 (1): 61.
[36] 李其昌 (Li Q C), 王广龙 (Wang G L), 高凤岐 (Gao F Q), 卢江雷(Lu J L), 张姗姗 (Zhang S S), 王磊 (Wang L). 传感器与微系统 (Transducer and Microsystem Technologies), 2013, 32 (1): 95.
[37] Kosaka P M, Pini V, Ruz J J, da Silva R A, Gonzalez M U, Ramos D, Calleja M, Tamayo J. Nat. Nanotechnol., 2015, 9 (12): 1047.
[38] Arlett J L, Myers E B, Roukes M L. Nat. Nanotechnol., 2011, 6 (4): 203.
[39] McCaig H C, Myers E, Lewis N S, Roukes M L. Nano. Lett., 2014, 14 (7): 3728.
[40] Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bathtold A. Nat. Nanotechnol., 2012, 7 (5): 300.
[41] 张奇 (Zhang Q), 任权 (Ren Q), 靳鹏云 (Jin P Y),韩立 (Han L). 现代科学仪器 (Modern Scientific Instruments), 2010, 4 (2) : 180.
[42] Brantley W A. J. Appl. Phys., 1973, 44 (1): 534.
[43] Dareing D W, Thundant T. J. Appl. Phys., 2005, 97 (4): 043526.
[44] Yang S M, Chang C. Sensors and Actuators B., 2010, 145: 405.
[45] 张柏林 (Zhang B L), 潘宏青 (Pan H Q). 黑龙江大学自然科学学报 (Journal of Natural Science of Heilongjiang University), 2011, 28 (5): 676.
[46] Singamaneni S, Lemienux M C, Lang H P, Gerber C, Lam Y, Zauscher S, Datskos P G, Lavrik N V, Jiang H, Naik R R. Adv. Mater., 2008, 20 (4): 653.
[47] 邬林 (Wu L), 吴定强 (Wu D Q), 张青川 (Zhang Q C). 实验力学 (Journal of Experimental Mechanics), 2012, 27 (6): 696.
[48] Kae S K,Swamy K B M,Mukherjee B.Microsystem Technologies,2013, 19 (1) : 79.
[49] Pustan M, Rochus V, Golinval J C. Microsyst. Technol., 2012, 18 (3): 247.
[50] Kim B H, Kim B I, Lee J C, Shin S J, Kim S J. Sensor Actuat A-Phys., 2012, 173 (1): 244.
[51] 佘东生 (She D S), 杨一柳 (Yang Y L), 魏泽飞 (Wei Z F), 王晓东 (Wang X D), 王立鼎 (Wang L D). 仪器仪表学报 (Chinese Journal of Scientific Instrument), 2015, 36 (8): 1892.
[52] Meyer G., Amer N M. Appl. Phys. Lett., 1988, 53(12): 1045.
[53] Morita K, Sugimoto Y, Sasagawa Y, Abe M, Morita S. Nanotechnology, 2010, 21 (30): 305704.
[54] 文丰 (Wen F). 北京理工大学博士学位论文(Doctoral Dissertation of Beijing Institute of Technology), 2014.
[55] Cooper E S, Post E R, Griffith S, Levitan J, Manalis S R, Schmidt M A, Quate C F. Appl. Phys. Lett., 2000, 76 (22): 3316.
[56] Loui A, Goericke F T, Ratto T V, Lee J, Hart B R, King W P. Sensor Actuat A-Phys., 2008, 147(2): 516.
[57] 黄渊 (Huang Y). 中国科学技术大学博士学位论文(Doctoral Dissertation of Universtity of Science and Technology of China), 2009.
[58] Sang S B, Zhao Y, Zhang W D, Li P W, Hu J, Li G. Biosens. Bioelectron., 2014, 51: 124.
[59] Thuau D, Ayela C, Poulin P, Dufour I. Sensor Actuat. A-Phys., 2014, 209: 161.
[60] Binnig G, Rohrer H, Gerber C. Weibel E. Appl. Phys. Lett., 1982, 40: 178.
[61] Kenny T W, Kaiser W J, Podosck J A, Rockstad H K, Reynolds J K, Vote E C. J. Vac. Sci. Technol. A, 1993, 11(4): 797.
[62] 舒启清 (Shu Q Q). 电子隧穿原理 ( Instrument Science and Technology). 北京:科学出版社(Beijing:China Science Publishing & Media Ltd.), 1998. 1.
[63] Dravid V P, Shekawat G, Tark S H. Science, 2006, 311 (5767): 1592.
[64] Kim B H, Mader O, Weimar U, Brock R, Kern D P. J. Vac. Sci. Technol. B, 2003, 21 (4): 1472.
[65] Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Chem. Rev., 2005, 105 (4): 1103.
[66] Oh S J, Cho S J, Kim C O, Park J W. Langmuir, 2002, 18 (5): 1764.
[67] Herne T M, Tarlov M J. J. Am. Chem. Soc., 1997, 119 (38): 8916.
[68] 李辉彦 (Li H Y), 白效静 (Bai X J), 王风红 (Wang F H), 李静 (Li J),唐纪琳 (Tang J L). 应用化学 (Chinese Journal of Applied Chemistry), 2015, 32 (3): 362.
[69] Velanki S, Kelly S, Thundat T, Blake D A, Ji H F. Ultramicroscopy, 2007, 107: 1123.
[70] Tokuhisa H, Liu J A, Omori A, Kanesato M, Hiratani K, Baker L A. Langmuir, 2009, 25(3): 1633.
[71] Bietsch A, Zhang J Y, Hegner M, Lang H P, Gerber C. Nanotechnology, 2004, 15 (8): 873.
[72] Bietsch A, Hegner M, Lang H P, Gerber C. Langmuir, 2004,20 (12): 5119.
[73] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherodt H J, Gerber C, Gimzewski J K. Science, 2000, 288 (5464): 316.
[74] Yang S M, Chang C, Yin T I, Kuo P L. Sensor Actuat. B-Chem., 2008, 130 (2): 674.
[75] Zheng S, Choi J H, Lee S M, Hwang K S, Kim S K, Kim T S. Lab Chip, 2011, 11 (1): 63.
[76] Sungkanak U, Sappat A, Wisitsoraat A, Promptmas C, Tuantranont A. Biosens. Bioelectron., 2010, 26 (2): 784.
[77] Numfon K, Wijit W, Assawapong S, Kata J, Adisorrn T, Chamras P. Biosens. Bioelectron., 2015, 63: 347.
[78] 韩乐 (Han L), 高志贤 (Gao Z X), 宁保安 (Ning B A). 哈尔滨医科大学学报 (Journal of Harbin Medical University), 2013, 47 (5): 425.
[79] Tzeng T Cheng Y, Saeidpourazar R, Aphale S, Jalili N. J. Heat Trans-T Asme., 2011, 133 (1): 011012.1.
[80] Wang J H, Morton M J, Elliott C T, Karoonuthaisiri N, Segatori L, Biswal S L. Anal. Chem., 2014, 86 (3) : 1671.
[81] Moulin A M, O'Shea S J, Badley R A, Doyle P, Welland M E. Langmuir, 1999, 15 (26): 8776.
[82] Liu Y J, Li X X, Zhang Z X, Zuo G M, Cheng Z X, Yu H T. Biomed. Microdevices, 2009, 11 (1): 183.
[83] 王赬胤(Wang C Y), 王德艳(Wang D Y), 汪国秀(Wang G X), 胡效亚(Hu X Y). 分析化学(Chinese J. Anal. Chem.), 2010, 38 (12): 1771.
[84] Hou H, Bai X J, Xing C Y, Lu B P, Hao J H, Ke X, Gu N Y, Zhang B L, Tang J L, Talanta, 2013, 109: 173.
[85] 董晓东 (Dong X D), 于朝云 (Yu C Y), 杨慧 (Yang H), 安朴英 (An P Y). 医学研究与教育 (Medical Research and Education), 2011, 28 (2): 6.
[86] Huang Y, Xue C G, Zhang Q C, Tan W M, Wang B M. J. Med. Biomechan., 2009, 24: 89.
[87] Tan W M, Huang Y, Nan T G, Xue C G, Li Z H, Zhang Q C, Wang B M. Anal. Chem., 2010, 82 (2): 615.
[88] Wu S Q, Nan T G, Xue C G, Cheng T, Liu H, Wang B M, Zhang Q C, Wu X P. Biosens. Bioelectron., 2013, 48: 67.
[89] Wei Y L,Chen Y X, Li H H, Shuang S M, Dong C, Wang G F. Biosens. Bioelectron., 2015, 63: 311.
[90] Zhao H W, Xue C G, Nan T G, Tan G Y, Li Z H, Li Q X, Zhang Q C, Wang B M. Anal. Chim. Acta, 2010, 676 : 81.
[91] Xue C G, Zhao H W, Liu H, Chen Y Y, Wang B M, Zhang Q C, Wu X P. Sensor Actuat. B-Chem., 2011, 156 (2) : 863.
[92] Suye S I, Tandel S, Mulchandani A. Anal. Chem., 1997, 69: 3633.
[93] 陈雁云 (Chen Y Y), 薛长国 (Xue C G), 黄渊 (Huang Y), 张青川(Zhang Q C), 刘红 (Liu H), 王保民 (Wang B M), 伍小平 (Wu X P). 实验力学 (Journal of Experimental Mechanics), 2010, 25 (5): 529.
[94] 刘志伟 (Liu Z W), 童朝阳 (Tong Z Y), 穆晞惠 (Mu X H), 刘冰 (Liu B), 郝兰群 (Hao L Q),张金平 (Zhang J P). 传感器与微系统( Transducer and Microsystem Technologies), 2014, 33 (3): 8.
[95] 刘志伟(Liu Z W), 童朝阳 (Tong Z Y), 郝兰群 (Hao L Q), 穆晞惠(Mu X H), 张金平 (Zhang J P), 高川 (Gao C). 分析化学研究报告 (Chinese Journal of Analytical Chemistry), 2014, 42 (8) : 1143.
[96] Chen X J, Bai X J, Li H Y, Zhang B L. RSC Advance, 2015, 5 (45): 35448.
[97] Campbell G A, Mutharasan R. Biosens. Bioelectron., 2005, 21 (3): 462.
[98] Lu J, Ikehara T, Zhang Y, Mihara T, Itoh T, Maeda R. JPN J. Appl. Phys., 2007,46(12): 7643.
[99] Cha B H, Lee S M, Park J C, Hwang K S, Kim S K, Lee Y S, Ju B K, Kim T S. Biosens. Bioelectron., 2009, 25 (1): 130.
[100] Johnson B N, Mutharasan R. Analyst, 2014, 139 (5): 1112.
[101] Ricciardi C, Canavese G, Castagna R, Ferrante I, Ricci A, Marasso S, L, Napione L, Bussolino F. Biosens. Bioelectron., 2010, 26 (4): 1565.
[102] Fu L L, Zhang K W, Li S Q, Wang Y H, Huang T S, Anxue Zhang A X, Cheng Z Y. Sensor Actuat B-Chem., 2010, 150 (1): 220.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[5] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[6] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[7] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[8] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[9] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[10] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[11] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[12] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[13] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[14] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[15] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
Viewed
Full text


Abstract

Microcantilever Biosensors