中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 647-656 DOI: 10.7536/PC151110 Previous Articles   Next Articles

• Review and comments •

Preparation and Application of Graphene/Cellulose Composites

Gao Yurong1,2, Huang Pei1, Sun Peipei1, Wu Min1*, Huang Yong1   

  1. 1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51472253, 51172247, 51373191).
PDF ( 3375 ) Cited
Export

EndNote

Ris

BibTeX

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed together in a honeycomb hexagonal lattice. The exceptional structure endows graphene with excellent electrical, mechanical, thermal, and optical properties. Up to now, considerable efforts have been made to explore its application in varied areas, such as catalyst, battery, sensor and etc. Cellulose, one of the most abundant natural polymer on earth, is featured by non-toxicity, renewability, biodegradability and biocompatibility. The hydrophilicity and hydrophobicity, originated from the enriched O-H and C-H, respectively, have made cellulose an ideal candidate for the fabrication of graphene-based materials. So far, graphene/cellulose composites have shown great potential in the applications of transparent conductive flexible films, supercapacitors, drug delivery, UV-protection, sensors, absorbents and so on. In this review, we study the interaction between cellulose materials and graphene materials. Subsequently, the mixing technics, fabrication methods, and application of the graphene/cellulose composites are summarized. Finally, problems, such as dispersion of graphene in cellulose and production efficiency, hampering its up-scale application, have been pointed out.

Contents
1 Introduction
2 Interactions between graphene and cellulose
3 Mixing methods of graphene/cellulose composite
3.1 Solution mixing
3.2 Melting mixing
3.3 Others
4 Processing of graphene/cellulose composite
4.1 Regeneration of cellulose gel
4.2 Vacuum filtration
4.3 Solution coating
4.4 Dip and dry
4.5 Film transfer
4.6 Aerogel through freeze drying
5 Applications of graphene/cellulose composite
5.1 Thin film materials
5.2 Supercapacitors
5.3 Drug delivery
5.4 UV-protection
5.5 Sensors
5.6 Absorbents
5.7 Others
6 Conclusion

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306 (5696): 666.
[2] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321 (5887): 385.
[3] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K. Science, 2008, 320 (5881): 1308.
[4] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146 (9/10): 351.
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8 (3): 902.
[6] Xin G, Sun H, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T, Lian J. Adv. Mater., 2014, 26 (26): 4521.
[7] Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Energy Environ. Sci., 2011, 4 (4): 1277.
[8] 高洁(Gao J), 汤烈贵(Tang L G). 纤维素科学(Cellulose Science). 北京: 科学出版社 ( Beijing: Science Press), 1999. 1.
[9] Morin B P, Breusova I P, Rogovin Z A. Adv. Polym. Sci., 1982, 42: 139.
[10] Heinze T, Liebert T. Prog. Polym. Sci., 2001, 26: 1689.
[11] Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40 (7): 3941.
[12] Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A. Biomacromolecules, 2009, 10 (7): 1992.
[13] Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A. Carbohydr. Polym., 2011, 84 (1): 579.
[14] Seppälä J V. eXPRESS Polymer Lett., 2012, 6 (4): 257.
[15] Siró I, Plackett D. Cellulose, 2010, 17 (3): 459.
[16] Boujemaoui A, Carlsson L, Malmstrom E, Lahcini M, Berglund L, Sehaqui H, Carlmark A. ACS Appl. Mater. Interfaces, 2012, 4 (6): 3191.
[17] Luong N D, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L S, Seppälä J. Eur. Polym. J., 2013, 49 (2): 335.
[18] Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A. Biomacromolecules, 2013, 14 (4): 1160.
[19] Alqus R, Eichhorn S J, Bryce R A. Biomacromolecules, 2015, 16 (6): 1771.
[20] Yokota S, Ueno T, Kitaoka T, Wariishi H. Carbohyd. Res., 2007, 342 (17): 2593.
[21] Jeon G W, An J E, Jeong Y G. Composites Part B Engineering, 2012, 43 (8): 3412.
[22] Shateri-Khalilabad M, Yazdanshenas M E. Carbohydr. Polym., 2013, 96 (1): 190.
[23] Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N. Carbohydr. Polym., 2005, 61 (4): 414.
[24] Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules, 2007, 8 (8): 2485.
[25] Saito T, Isogai A. Biomacromolecules, 2004, 5 (5): 1983.
[26] Zhang J, Cao Y, Feng J, Wu P. J. Phys. Chem. C, 2012, 116 (14): 8063.
[27] Wu R L, Wang X L, Li F, Li H Z, Wang Y Z. Bioresour Technol., 2009, 100 (9): 2569.
[28] Zhang X, Liu X, Zheng W, Zhu J. Carbohydr. Polym., 2012, 88 (1): 26.
[29] Xu M, Huang Q, Wang X, Sun R. Ind. Crop. Prod., 2015, 70: 56.
[30] Zhang C, Zhang R Z, Ma Y Q, Guan W B, Wu X L, Liu X, Li H, Du Y L, Pan C P. ACS Sustainable Chem. Eng., 2015, 3 (3): 396.
[31] de Moraes A C, Andrade P F, de Faria A F, Simoes M B, Salomao F C, Barros E B, Goncalves M C, Alves O L. Carbohydr. Polym., 2015, 123: 217.
[32] Pahimanolis N, Vesterinen A H, Rich J, Seppala J. Carbohydr. Polym., 2010, 82 (1): 78.
[33] Luong N D, Pahimanolis N, Hippi U, Korhonen J T, Ruokolainen J, Johansson L S, Nam J D, Seppälä J. J. Mater. Chem., 2011, 21 (36): 13991.
[34] Kang Y R, Li Y L, Hou F, Wen Y Y, Su D. Nanoscale, 2012, 4 (10): 3248.
[35] Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F. Carbohydr. Polym., 2013, 97 (1): 243.
[36] Sadasivuni K K, Kafy A, Zhai L, Ko H U, Mun S, Kim J. Small, 2015, 11 (8): 994.
[37] Kafy A, Sadasivuni K K, Kim H C, Akther A, Kim J. Phys. Chem. Chem. Phys., 2015, 17 (8): 5923.
[38] 王磊磊(Wang L L). 北京化工大学博士论文(Doctoral Dissertation of Shanghai Jiaotong University), 2012.
[39] 王凯(Wang K). 上海交通大学博士论文(Doctoral Dissertation of Shanghai Jiaotong University), 2007.
[40] 陈志刚(Chen Z G), 张勇(Zhang Y), 杨娟(Yang J), 邱滔(Qiu T). 江苏大学学报(自然科学版)(Journal of Jiangsu University(Natural Science Edition)), 2005, 03: 248.
[41] Yoshida A, Hishiyama Y, Inagaki M. Carbon, 1991, 29 (8): 1227.
[42] Guo B, Chen W, Yan L. Acs. Sustain. Che. Eng., 2013, 1 (11): 1474.
[43] Weng Z, Su Y, Wang D W, Li F, Du J H, Cheng H M. Adv. Energy Mater., 2011, 1 (5): 917.
[44] Wan C, Jiao Y, Li J. Appl. Surf. Sci., 2015, 347: 891.
[45] Chen H, Müller M B, Gilmore K J, Wallace G G, Li D. Adv. Mater., 2008, 20 (18): 3557.
[46] Putz K W, Compton O C, Palmeri M J, Nguyen S T, Brinson L C. Adv. Funct. Mater., 2010, 20 (19): 3322.
[47] Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. Carbohydr. Polym., 2012, 87 (1): 644.
[48] Liang Y T, Hersam M C. J. Am. Chem. Soc., 2010, 132 (50): 17661.
[49] Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y. Carbon, 2013, 62: 501.
[50] Yao X, Yu W, Xu X, Chen F, Fu Q. Nanoscale, 2015, 7 (9): 3959.
[51] Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F. J. Mater. Chem. A, 2013, 1 (1): 63.
[52] Lee Y H, Kim J S, Noh J, Lee I, Kim H J, Choi S, Seo J, Jeon S, Kim T S, Lee J Y, Choi J W. Nano Lett., 2013, 13 (11): 5753.
[53] Yan C Y, Ren P G, Zhang Z P, Wang H, Li Z M. Cellulose, 2015, 22 (2): 1243.
[54] Shateri-Khalilabad M, Yazdanshenas M E. Cellulose, 2013, 20 (2): 963.
[55] Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22 (8).
[56] Niu Z, Dong H, Zhu B, Li J, Hng H H, Zhou W, Chen X, Xie S. Adv. Mater., 2013, 25 (7): 1058.
[57] Nyholm L, Nystrom G, Mihranyan A, Stromme M. Adv. Mater., 2011, 23 (33): 3751.
[58] Liu N, Ma W, Tao J, Zhang X, Su J, Li L, Yang C, Gao Y, Golberg D, Bando Y. Adv. Mater., 2013, 25 (35): 4925.
[59] Niu Z, Liu L, Zhang L, Shao Q, Zhou W, Chen X, Xie S. Adv. Mater., 2014, 26 (22): 3681.
[60] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Lett., 2012, 12 (4): 1806.
[61] Xu Y, Lin Z, Huang X, Wang Y, Huang Y, Duan X. Adv. Mater., 2013, 25 (40): 5779.
[62] Wang H, Zhu B, Jiang W, Yang Y, Leow W R, Wang H, Chen X. Adv. Mater., 2014, 26 (22): 3638.
[63] Niu Z, Zhou W, Chen J, Feng G, Li H, Hu Y, Ma W, Dong H, Li J, Xie S. Small, 2013, 9 (4): 518.
[64] Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L. MRS. Bull., 2013, 38 (04): 320.
[65] Siegel A C, Phillips S T, Dickey M D, Lu N, Suo Z, Whitesides G M. Adv. Funct. Mater., 2010, 20 (1): 28.
[66] Mazzeo A D, Kalb W B, Chan L, Killian M G, Bloch J-F, Mazzeo B A, Whitesides G M. Adv. Mater., 2012, 24 (21): 2850.
[67] Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J. Energy Environ. Sci., 2013, 6 (2): 470.
[68] Hyun W J, Park O O, Chin B D. Adv. Mater., 2013, 25 (34): 4729.
[69] Shi Z, Phillips G O, Yang G. Nanoscale, 2013, 5 (8): 3194.
[70] Andres B, Forsberg S, Dahlström C, Blomquist N, Olin H. Phys. Status Solidi B, 2014, 251 (12): 2581.
[71] Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50 (24): 5438.
[72] Rath T, Kundu P P. RSC Adv., 2015, 5 (34): 26666.
[73] Gao K, Shao Z, Wu X, Wang X, Zhang Y, Wang W, Wang F. Nanoscale, 2013, 5 (12): 5307.
[74] Lv S, Fu F, Wang S, Huang J, Hu L. Electron. Mater. Lett., 2015, 11 (4): 633.
[75] Wang D, Li Y X, Shi Z, Qin H L, Wang L, Pei X F, Jin J. Langmuir, 2010, 26 (18): 14405.
[76] Hu C, He S, Jiang S, Chen S, Hou H. RSC Adv., 2015, 5 (19): 14441.
[77] Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F. J. Power Sources, 2014, 249: 148.
[78] Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S. Adv. Mater., 2014, 26 (28): 4855.
[79] Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. J. Mater. Chem., 2012, 22 (27): 13773.
[80] An J, Gou Y, Yang C, Hu F, Wang C. Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33 (5): 2827.
[81] Bao H, Pan Y, Ping Y, Sahoo N G, Wu T, Li L, Li J, Gan L H. Small, 2011, 7 (11): 1569.
[82] Chowdhury I, Duch M C, Mansukhani N D, Hersam M C, Bouchard D. Environ. Sci. Technol., 2013, 47 (12): 6288.
[83] Hong B J, Compton O C, An Z, Eryazici I, Nguyen S T. ACS Nano, 2012, 6 (1): 63.
[84] Hu H, Yu J, Li Y, Zhao J, Dong H. J Biomed. Mater. Res. A, 2012, 100 (1): 141.
[85] Mianehrow H, Moghadam M H, Sharif F, Mazinani S. Int. J. Pharm., 2015, 484 (1/2): 276.
[86] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nano., 2008, 3 (2): 101.
[87] Lee K Y, Buldum G, Mantalaris A, Bismarck A. Macromol. Biosci., 2014, 14 (1): 10.
[88] Yousefi H, Faezipour M, Hedjazi S, Mousavi M M, Azusa Y, Heidari A H. Ind. Crop. Prod., 2013, 43: 732.
[89] Rahmany M B, van Dyke M. Acta Biomater., 2013, 9 (3).
[90] Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger M P. J. Mater. Sci., 2011, 47 (3): 1171.
[91] Zhu W, Li W, He Y, Duan T. Appl. Surf. Sci., 2015, 338: 22.
[92] Parejo P G, Zayat M, Levy D. J. Mater. Chem., 2006, 16 (22): 2165.
[93] Denes A R, Young R A. Holzforschung, 1999, 53: 632.
[94] Lee B H, Kim H J. Polym. Degrad. Stabil., 2006, 91 (5): 1025.
[95] Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A. Holz. Roh. Werkst., 2003, 61 (3): 221.
[96] Xie Y, Krause A, Mai C, Militz H, Richter K, Urban K, Evans P D. Polym. Degrad. Stabil., 2005, 89 (2): 189.
[97] Kiguchi M, Kataoka Y, Matsunaga H, Yamamoto K, Evans P D. J. Wood. Sci., 2006, 53 (3): 134.
[98] Hill C A, Cetin N S, Quinney R F, Derbyshire H, Ewen R J. Polym.Degrad.Stabil., 2001, 72: 133.
[99] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22 (35): 3906.
[100] Zhang Y, Zhuang S, Xu X, Hu J. Opt. Mater., 2013, 36 (2): 169.
[101] Calvo M E, Castro Smirnov J R, Miguez H. J. Polym. Sci., Part B Polym. Phys., 2012, 50 (14): 945.
[102] Valentini L. Mater. Lett., 2015, 148: 204.
[103] Bao W, Fang Z, Wan J, Dai J, Zhu H, Han X, Yang X, Preston C, Hu L. ACS Nano, 2014, 8 (10): 10606.
[104] Jang E, Son K J, Kim B, Koh W G. Analyst, 2010, 135 (11): 2871.
[105] Buenger D, Topuz F, Groll J. Prog. Polym. Sci., 2012, 37 (12): 1678.
[106] Burrs S L, Vanegas D C, Rong Y, Bhargava M, Mechulan N, Hendershot P, Yamaguchi H, Gomes C, McLamore E S. Analyst, 2015, 140 (5): 1466.
[107] Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H. J. Mater. Chem. A, 2014, 2 (2): 326.
[108] Yang S T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A. J. Colloid Interface Sci., 2010, 351 (1):122.
[109] Wu Y, Luo H, Wang H, Wang C, Zhang J, Zhang Z. J. Colloid Interface Sci., 2013, 394: 183.
[110] Ramesha G K, Kumara A V, Muralidhara H B, Sampath S. J. Colloid Interface Sci., 2011, 361 (1): 270.
[111] Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L. Carbohydr. Polym., 2013, 95 (1): 501.
[112] Yang S T, Chen S, Chang Y, Cao A, Liu Y, Wang H. J. Colloid Interface Sci., 2011, 359 (1): 24.
[113] Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah S M, Su X. J. Colloid Interface Sci., 2012, 368 (1): 540.
[114] Chowdhury S, Balasubramanian R. Adv. Colloid Interface Sci., 2014, 204: 35.
[115] Zhang X, Yu H, Yang H, Wan Y, Hu H, Zhai Z, Qin J. J. Colloid Interface Sci., 2015, 437: 277.
[116] Liu X, Zhou Y, Nie W, Song L, Chen P. J. Mater. Sci., 2015, 50 (18): 6113.
[117] Luong N D, Seppälä J. Cellulose, 2015, 22 (3): 1799.
[118] Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L. Nat. Nanotechnol., 2015, 10 (3): 277.
[119] Valentini L, Cardinali M, Fortunati E, Kenny J M. Appl. Phys. Lett., 2014, 105 (15): 153111.
[1] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[8] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[9] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[10] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[13] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[14] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[15] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.