中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 711-726 DOI: 10.7536/PC151038 Previous Articles   Next Articles

• Review and comments •

Aligned Nanofibers Based on Electrospinning Technology

Jiang Min1, Wang Min1, Wei Shiyong2, Chen Zhibao2, Mu Shichun1*   

  1. 1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
    2. Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51372186), the Basic Research Development Program of China (973 Program)(No.2012CB215504) and the Open Foundation of Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials (No.2013-KLP-05).
PDF ( 3135 ) Cited
Export

EndNote

Ris

BibTeX

Nanofibers have many promising applications as a main component of one-dimensional nanomaterials. Electrospinning technology is a facile and effective way to prepare nanofibers. However, the traditional preparation process only obtains non-aligned nanofibers, which significantly hinders their application. In recent few decades, many efforts have been focused on optimization of the preparation method, and well aligned nanofibers (ANFs) have been successfully obtained through improving spinning set-ups, collectors, and optimizing the separation section of nanofibers. Due to the absence of a systematic appraisal of ANFs, here a review of the preparation methods of ANFs based on electrospinning and their applications in tissue engineering regeneration, sensors, reinforced materials, sensors and energy devices, is present. Owing to the wide application of ANFs in tissue engineering regeneration, a detailed discussion is provided in that regard. In the field of energy, the application of ANFs in PEM fuel cells is focused. Finally, the challenges and outlooks for the development of ANFs are summarized.

Contents
1 Introduction
2 Electrospinning technology
3 Fabrication of electrospun ANFs
3.1 Improved collector methods
3.2 Magnetic assistance mothod
3.3 Conjugate spinneret electrospinning method
3.4 Centrifugal electrospinning method
3.5 Near-field electrospinning method
3.6 Multiple collectors method
4 Applications of electrospun ANFs
4.1 Tissue engineering
4.2 Sensors
4.3 Reinforced materials
4.4 Energy
5 Conclusion and outlook

CLC Number: 

[1] Shelley T. Nanotechnology: New Promises, New Dangers, London: Zed Books, 2006.
[2] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. Adv. Mater., 2003, 15: 353.
[3] Iijima S. Nature, 1991, 354: 56.
[4] Kuchibhatla S V N T, Karakoti A S, Bera D, Seal S. Prog. Mater. Sci., 2007, 52: 699.
[5] Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. J. Mater. Chem., 2010, 20: 4223.
[6] Huang W, Jiang Y, Li X, Li X J, Wang J Y, Wu Q, Liu X K. ACS Appl. Mater. Interfaces, 2013, 5: 8845.
[7] Nessim G D, Acquaviva D, Seita M, O'brien K P, Thompson C V. Adv. Funct. Mater., 2010, 20: 1306.
[8] Liang C H, Meng G W, Lei Y, Phillipp F, Zhang L D. Adv. Mater., 2001, 13: 1330.
[9] Löwik D W P M, Shklyarevskiy I O, Ruizendaal L, Christianen P C M, Maan J C, Hest J C M V. Adv. Mater., 2007, 19: 1191.
[10] Formhals A. USA 1975504, 1934.
[11] Li D, Xia Y N. Adv. Mater., 2004, 16: 1151.
[12] Li D, Wang Y L, Xia Y N. Nano Lett., 2003, 3: 1167.
[13] Li D, Wang Y L, Xia Y N. Adv. Mater., 2004, 16: 361.
[14] Teo W E, Ramakrishna S. Nanotechnology, 2006, 17: R89.
[15] 刘瑞来(Liu R L), 刘海清(Liu H Q), 刘俊劭(Liu J S), 江慧华(Jiang H H). 化学进展(Progress in Chemistry), 2012, 24: 1484.
[16] 金许翔(Jin X X), 张全超(Zhang Q C), 牛鹏飞(Niu P F), 唐山(Tang S), 陈璟(Chen J), 王孝军(Wang X J), 杨杰(Yang J). 高分子通报(Polymer Bulletin), 2009, (2): 42.
[17] Chew S Y, Wen J, Yim E K F, Leong W K. Biomacromolecules, 2005, 6: 2017.
[18] Katta P, Alessandro M, Ramsier R D, Chase G G. Nano Lett., 2004, 4: 2215.
[19] Theron A, Zussman E, Yarin A L. Nanotechnology, 2001, 12: 384.
[20] Dersch R, Liu T Q, Schaper A K, Greiner A, Wendorff J H. J. Polym. Sci., Part A: Polym. Chem., 2003, 41: 545.
[21] Teo W E, Ramakrishna S. Nanotechnology, 2005, 16: 1878.
[22] Ishii Y, Sakai H, Murata H. Mater. Lett., 2008, 62: 3370.
[23] Dalton P D, Klee D, Möller M. Polymer, 2005, 46: 611.
[24] Carnell L S, Siochi E J, Wincheski R A, Holloway N M, Clark R L. Scr. Mater., 2009, 60: 359.
[25] Wu Y Q, Carnell L A, Clark R L. Polymer, 2007, 48: 5653.
[26] Teo W E, Kotaki M, Mo X M, Ramakrishna S. Nanotechnology, 2005, 16: 918.
[27] Smit E, Büttner U, Sanderson R D. Polymer, 2005, 46: 2419.
[28] Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramaskrishna S. Polymer, 2007, 48: 3400.
[29] Wu Y, Yu J Y, He J H, Wan Y Q. Chaos, Solitons & Fractals, 2007, 32: 5.
[30] Yang D Y, Lu B, Zhao Y, Jiang X Y. Adv. Mater., 2007, 19: 3702.
[31] Pan H, Li L, Hu L, Cui X J. Polymer, 2006, 47: 4901.
[32] 李新松(Li X S), 姚琛(Yao C), 孙复钱(Sun F Q). CN200510095384.0, 2006.
[33] 李新松(Li X S), 姚琛(Yao C), 宋唐英(Song T Y). CN200510038571.5, 2005.
[34] Sarkar K, Gomez C, Zambrano S, Ramirez M, Hoyos E, Vasquez H, Lozano K. Mater. Today, 2010, 13: 12.
[35] Li M M, Long Y Z, Yang D Y, Sun J S, Yin H X, Zhao Z, Kong W H, Jiang X Y, Fan Z Y. J. Mater. Chem., 2011, 21: 13159.
[36] Erickson A E, Edmondson D, Chang F C, Wood D, Gong A, Levengood S L, Zhang M Q. Carbohydr. Polym., 2015, 134: 467.
[37] Sun D H, Chang C, Li S, Lin L W. Nano Lett., 2006, 6: 839.
[38] Pu J, Yan X J, Jiang Y D, Chang C, Lin L W. Sens. Actuators A, 2010, 164: 131.
[39] Zheng J, Long Y Z, Sun B, Zhang Z H, Shao F, Zhang H D, Zhang Z M, Huang J Y. Chin. Phys. B, 2012, 21: 048102.
[40] Zhao J H, Liu H Y, Xu L. Mater. Des., 2016, 90: 1.
[41] Beachley V, Katsanevakis E, Zhang N, Wen X J. Adv. Polym. Sci., 2012, 246: 171.
[42] 蔡开勇(Cai K Y), 林松柏(Lin S B), 姚康德(Yao K D). 化学进展(Progress in Chemistry), 2001, 13: 59.
[43] Lu J, Zou X, Zhao Z, Mu Z D, Zhao Y J, Gu Z Z. ACS Appl. Mater. Interfaces, 2015, 7: 10091.
[44] Aviss K J, Gough J E, Downes S. Eur. Cells Mater., 2010, 19: 193.
[45] Choi J S, Lee S J, Christ G J, Atala A, Yoo J J. Biomaterials, 2008, 29: 2899.
[46] Shang S H, Yang F, Cheng X R, Walboomers X F, Jansen J A. Eur. Cells Mater., 2010, 19: 180.
[47] Meng J, Kong H, Han Z Z, Wang C Y, Zhu G J, Xie S S, Xu H Y. J. Biomed. Mater. Res., Part A, 2009, 88: 105.
[48] Kievit F M, Cooper A, Jana S, Leung M C, Wang K, Edmondson D, Wood D, Lee J S H, Ellenbogen R G, Zhang M Q. Adv. Healthc. Mater., 2013, 2: 1651.
[49] Lee C H, Shin J H, Cho H I, Kang Y M, Kim A I, Park K D, Shin J W. Biomaterials, 2005, 26: 1261.
[50] Kolambkar Y M, Bajin M, Wojtowicz A, Hutmacher D W, García A J, Guldberg R E. Tissue Eng., Part A, 2014, 20: 398.
[51] Ma B, Xie J W, Jiang J, Shuler F D, Bartlett D E. Nanomedicine, 2013, 8: 1459.
[52] Jiang T, Carbone E J, Lo K W H, Laurencin C T. Prog. Polym. Sci., 2014, 46: 1.
[53] Jing X, Mi H Y, Peng J, Peng X F, Turng L S. Carbonhydr. Polym., 2015, 117: 941.
[54] Subramanian A, Krishnan U M, Sethuraman S. J. Biomed. Sci., 2009, 16: 108.
[55] Ribeiro-Resende V T, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B. Biomaterials, 2009, 30: 5251.
[56] Zhang J G, Qiu K X, Sun B B, Fang J, Zhang K H, EI-Hamshary H, Al-Deyabd S S, Mo X M. J. Mater. Sci. B, 2014, 2: 7945.
[57] Chiono V, Tonda-Turo C. Prog. Neurobiol., 2015, 131: 87.
[58] Prabhakaran M P, Vatankhah E, Ramakrishna S. Biotechnol. Bioeng., 2013, 110: 2275.
[59] Christopherson G T, Song H J, Mao H Q. Biomaterials, 2009, 30: 556.
[60] Chew S Y, Mi R, Hoke A, Leong K W. Adv. Funct. Mater., 2007, 17: 1288.
[61] Huang C, Ouyang Y M, Niu H T, He N F, Ke Q F, Jin X Y, Li D W, Fang J, Liu W J, Fan C Y, Lin T, ACS Appl. Mater. Interfaces, 2015, 7: 7189.
[62] Koh H S, Yong T, Teo W E, Chan C K, Puhaindran M E, Tan T C, Lim A, Lim B H, Ramakrishna S. J. Neural. Eng., 2010, 7: 046003.
[63] Xie J W, Liu W Y, MacEwan M R, Bridgman P C, Xia Y N. ACS Nano, 2014, 8: 1878.
[64] Uttayarat P, Perets A, Li M, Pimton P, Stachelek S J, Alferiev I, Composto R J, Levy R J, Lelkes P I. Acta Biomater., 2010, 6: 4229.
[65] Xu H, Li H Y, Ke Q F, Chang J. ACS Appl. Mater. Interfaces, 2015, 7: 8706.
[66] Wu H J, Fan J T, Chu C C, Wu J. J. Mater. Sci.:Mater. Med., 2010, 21: 3207.
[67] Cooper A, Jana S, Bhattarai N, Zhang M Q. J. Mater. Chem., 2010, 20: 8904.
[68] Chen M C, Sun Y C, Chen Y H. Acta Biomater., 2013, 9: 5562.
[69] Barnes C P, Sell S A, Boland E D, Simpson D G, Bowlin G L. Adv. Drug Delivery Rev., 2007, 59: 1413.
[70] Wang L, Wu Y B, Guo B L, Ma P X. ACS Nano, 2015, 9: 9167.
[71] Silber J S, Anderson D G, Daffner S D, Brislin B T, Leland J M, Hilibrand A S, Vaccaro A R, Albert T J. Spine, 2003, 28: 134.
[72] Mankin H J, Hornicek F J, Raskin K A. Clin. Orthop. Relat. Res., 2005, 432: 210.
[73] Ngiam M, Liao S, Patil A J, Cheng Z Y, Chan C K, Ramakrishna S. Bone, 2009, 45: 4.
[74] Peng F, Yu X H, Wei M. Acta Biomater., 2011, 7: 2585.
[75] Shao S J, Zhou S B, Li L, Li J R, Luo C, Wang J X, Li X H, Weng J. Biomaterials, 2011, 32: 2821.
[76] Guo Z Z, Xu J M, Ding S, Li H, Zhou C R, Li L H. J. Biomater. Sci. Polym. Ed., 2015, 26: 989.
[77] Yang C W, Deng G Y, Chen W M, Ye X J, Mo X M. Colloids Surf. B, Biointerfaces, 2014, 122: 270.
[78] Full S M, Delman C, Gluck J M, Abdmaulen R, Shemin R J, Heydarkhan-Hagvall S. J. Biomed. Mater. Res., Part B, 2014, 103: 39.
[79] Liu S, Wu J L, Liu X D, Chen D S, Bowlin G L, Cao L, Lu J X, Li F F, Mo X M, Fan C Y. J. Biomed. Mater. Res., Part A, 2015, 103: 581.
[80] Wise J K, Yarin A L, Megaridis C M, Cho M. Tissue Eng., Part A, 2008, 15: 913.
[81] Baker B M, Mauck R L. Biomaterials, 2007, 28: 1967.
[82] Orr S B, Chainani A, Hippensteel K J, Kishan A, Gilchrist C, Garrigues N W, Ruch D S, Guilak F, Little D. Acta Biomater., 2015, 24: 117.
[83] Bosworth L A, Alam N, Wong J K, Downes S. J. Mater. Sci.: Mater. Med., 2013, 24: 1605.
[84] Xie J W, Li X R, Lipner J, Manning C N, Schwartz A G, Thomopoulos S, Xia Y N. Nanoscale, 2010, 2: 923.
[85] Perán M, García M A, Lopez-Ruiz E, Jiménez G, Marchal J A. Materials, 2013, 6: 1333.
[86] Stehlik J, Edwards L B, Kucheryavaya A Y, Benden C, Christie J D, Dipchand A I, Dobbels F, Kirk R, Rahmel A O, Hertz M I, J. Heart Lung Transplant., 2012, 31: 1052
[87] Fishman J A, N. Engl. J. Med., 2007, 357: 2601.
[88] Tandon V, Zhang B, Radisic M, Murthy S K. Biotechnol. Adv., 2013, 31: 722.
[89] Kharaziha M, Nikkhah M, Shin S R, Annabi N, Masoumi N, Gaharwar A K, Camci-Unal G, Khademhosseini A. Biomaterials, 2013, 34: 6355.
[90] Hsiao C W, Bai M Y, Chang Y, Chung M F, Lee T Y, Wu C T, Maiti B, Liao Z X, Li R K, Sung H W. Biomaterials, 2013, 34: 1063.
[91] Kai D, Prabhakaran M P, Jin G, Ramakrishna S. J. Biomed. Mater. Res., Part B Appl. Biomater., 2011, 98: 379.
[92] Li Y, Huang G, Zhang X, Wang L, Du Y, Lu T J, Xu F. Biotechnol. Adv., 2014, 32: 347
[93] Guex A G, Kocher F M, Fortunato G, Korner E, Hegemann D, Carrel T P, Tevaearai H T, Giraud M N. Acta Biomater., 2012, 8: 1481.
[94] Persano L, Dagdeviren C, Su Y W, Zhang Y H, Girardo S, Pisignano D, Huang Y G, Rogers J A. Nat. Commun., 2013, 4: 1633.
[95] Baniasadi M, Huang J C, Xu Z, Moreno S, Yang X, Chang J, Quevedo-Lopez M A, Naraghi M, Minary-Jolandan M, ACS Appl. Mater. Interfaces, 2015, 7: 5358.
[96] Sharma T, Naik S, Langevine J, Gill B, Zhang J X J. IEEE Trans. Biomed. Eng., 2015, 62: 188.
[97] Sharma T, Aroom K, Naik S, Gill B, Zhang J X J. Ann. Biomed. Eng., 2013, 41: 744.
[98] Kuo C C, Wang C T, Chen W C. Macromol. Mater. Eng., 2008, 293: 999.
[99] Gao Q, Meguro H, Okamoto S, Kimura M. Langmuir, 2012, 28: 17593.
[100] 俞平(Yu P), 黄建业(Huang J Y), 刘伟庭(Liu W T), 顾春欣(Gu C X), 傅新(Fu X), Dario P. 功能材料(Functional Materials), 2014, 45: 16052.
[101] Liu J, Yue Z R, Fong H. Small, 2009, 5: 536.
[102] Xie Z G, Niu H T, Lin T. RSC Advances, 2015, 5: 15147.
[103] 龚光明(Gong G M), 吴俊涛(Wu J T), 江雷(Jiang L). 化学进展(Progress in Chemistry), 2011, 23: 750.
[104] Huang C B, Chen S L, Reneker D H, Lai C L, Hou H Q. Adv. Mater., 2006, 18: 668.
[105] Andersson R L, Ström V, Gedde U W, Mallon P E, Hedenqvist M S, Olsson R T. Sci. Rep., 2014, 4: 6335.
[106] Su Z Q, Li J F, Li Q, Ni T Y, Wei G. Carbon, 2012, 50: 5605.
[107] Wang X R, Si Y, Wang X F, Yang J M, Ding B, Chen L, Hu Z M, Yu J Y. Nanoscale, 2013, 5: 886.
[108] Borges A L S, Münchow E A, Souza A C O, Yoshida T, Vallittu P K, Bottino C M. J. Mech. Behav. Biomed. Mater., 2015, 48: 134.
[109] Li P, Liu D W, Zhu B, Li B, Jia X L, Wang L L, Li G, Yang X P. Compos. Part A: Appl. Sci. Manufac., 2015, 68: 72.
[110] Ramazani S, Karimi M. Mater. Sci. Eng. C, 2015,56: 325.
[111] Lee J, Deng Y L. Macromol. Res., 2012, 20: 76.
[112] Wang Y X, Chen L G. ACS Appl. Mater. Interfaces, 2014, 6: 1709.
[113] Song Y, Zhang C Q, Yang Q B, Li Y X. Chem. Res. Chinese U., 2014, 30: 315.
[114] Liao H Q, Wu Y Q, Wu M Y, Zhan X R, Liu H Q. Cellulose, 2012, 19: 111.
[115] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63: 2223.
[116] Cai J, Chen J Y, Zhang Q, Lei M, He J R, Xiao A H, Ma C J, Li S, Xiong H G. Carbohyd. Polym., 2016, 140: 238.
[117] Chen D, Wang R Y, Tjiu W W, Liu T X. Compos. Sci. Technol., 2011, 71: 1556.
[118] Zhang H, Jin M S, Xia Y N. Chem. Soc. Rev., 2012, 41: 8035.
[119] Wu B H, Zheng N F. Nano Today, 2013, 8: 168.
[120] Steele B C H, Heinzel A. Nature, 2001,414: 345.
[121] Takemori R, Kawakami H. J. Power Sources, 2010,195: 5957.
[122] Wycisk R, Pintauro P N, Mather P T, Choi J, Lee K M. Macromolecules, 2008, 41: 4569.
[123] Mollá S, Compañ V, Gimenez E, Blazquez A, Urdanpilleta I. Int. J. Hydrogen Energ., 2011, 36: 9886.
[124] Dong B, Gwee L, Salas-de La Cruz D, Winey K I, Elabd Y A. Nano Lett., 2010, 10: 3785.
[125] Tamura T, Kawakami H. Nano Lett., 2010, 10: 1324.
[126] Tamura T, Takemori R, Kawakami H. J. Power Sources, 2012, 217: 135.
[127] Wu B, Pan J F, Ge L, Wu L, Wang H T, Xu T W. Sci. Rep., 2014, 4: 4334.
[128] Stankus J J, Guan J, Fujimoto K, Wagner W R. Biomaterials, 2006, 27: 735.
[129] Baker B M, Gee A O, Metter R B, Nathan A S, Marklein R A, Burdick J A, Mauck R L. Biomaterials, 2008, 29: 2348.
[130] Jana S, Zhang M Q. J. Mater. Chem. B, 2013, 1: 2575.
[131] Krishnamoorthy T, Thavasi V, Subodh G M, Ramakrishna S. Energy Environ. Sci., 2011, 4: 2807.
[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[3] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[4] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[5] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[6] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[7] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[8] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[9] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[10] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[11] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[12] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[13] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[14] Yaoxu Xiong, Yougen Hu, Pengli Zhu, Rong Sun, Ching-Ping Wong. Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures [J]. Progress in Chemistry, 2019, 31(6): 800-810.
[15] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.