中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 552-563 DOI: 10.7536/PC151031 Previous Articles   Next Articles

• Review and comments •

Preparation and Applications of Core-Shell Molecularly Imprinted Polymers

Ming Weina1,2, Wang Xiaoyan2,3, Ming Yongfei4, Li Jinhua2, Chen Lingxin1,2*   

  1. 1. Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
    2. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003;
    3. School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
    4. School of Life Science, Ludong University, Yantai 264025, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21275158, 21477160).
PDF ( 1044 ) Cited
Export

EndNote

Ris

BibTeX

Molecularly imprinted polymers (MIPs) are a new kind of smart polymers with molecular recognition sites complementary to the template molecules in shape, size and functional groups. MIPs can selectively recognize and effectively concentrate target analytes (template molecules) as well as reduce matrices interferences, and they have been widely applied in many fields such as sample pretreatment, chemical/biological sensors, and drug delivery. However, there are still some problems during the traditional synthesis processes of MIPs, such as incomplete template removal, low binding capacity, slow mass transfer and binding kinetic. Surface imprinting is a very effective way to solve the problems, and the resultant core-shell MIPs have cavities at the polymer surface or close to the surface, which can facilitate the elution and diffusion of the template molecules, and increase effective recognition sites and improve imprinting capacities. This review summarizes several types of core-shell MIPs including magnetic core and non-magnetic core, focusing on their preparation and applications. Also, the preparation and development of hollow core-shell MIPs are discussed. Finally, the future outlook of core-shell MIPs is proposed.

Contents
1 Introduction
2 Core-shell molecularly imprinted polymers
2.1 Magnetic core-shell MIPs
2.2 Non-magnetic core-shell MIPs
3 Hollow core-shell MIPs
4 Conclusion and outlook

CLC Number: 

[1] Turiel E, Martin-Esteban A. Anal. Chim. Acta, 2010, 668: 87.
[2] Chen L X, Xu S F, Li J H. Chem. Soc. Rev., 2011, 40: 2922.
[3] Xu S F, Lu H Z, Zheng X W, Chen L X. J. Mater. Chem. C, 2013, 1: 4406.
[4] 张明磊(Zhang M L), 张朝晖(Zhang Z H), 张立吉(Zhang L J), 刘丽(Liu L), 聂丽华(Nie L H). 化学通报(Chemistry Online), 2010, 2: 160.
[5] Pichon V. J. Chromatogr. A, 2007, 1152: 41.
[6] Li L, He X W, Chen L X, Zhang Y K. Chem. Asian J., 2009, 4: 286.
[7] Lu F G, Yang J L, Sun M, Fan L L, Qiu H M, Li X J, Luo C N. Anal. Bioanal.Chem., 2012, 404: 79.
[8] Tan L, Li W M, Li H, Tang Y W. J. Chromatogr. A, 2014, 1336: 59.
[9] Liu H L, Liu D R, Fang G Z, Liu F F, Liu C C, Yang Y K, Wang S. Anal. Chim. Acta, 2013, 762: 76.
[10] Shen X T, Zhu L H, Li J, Tang H Q. Chem. Commun., 2007, 11: 1163.
[11] Wang P, Zhang A X, Jin Y, Zhang Q, Zhang L Y, Peng Y, Du S H. RSC Adv., 2014, 4: 26063.
[12] 李金花(Li J H), 温莹莹(Wen Y Y), 陈令新(Chen L X). 色谱(Chinese Journal of Chromatography), 2013, 31: 181.
[13] Gao D M, Zhang Z P, Wu M H, Xie C G, Guan G J, Wang D P. J. Am. Chem. Soc., 2007, 129: 7859.
[14] 丛姣姣(Cong J J), 罗静(Luo J), 高雅涵(Gao Y H), 刘晓亚(Liu X Y). 高分子通报(Polymer Bulletin), 2015, 5: 10.
[15] 杨卫海(Yang W H), 吴瑶(Wu Y), 张轶(Zhang Y), 卫晨(Wei C), 严守雷(Yan S L), 王清章(Wang Q Z). 化学进展(Progress in Chemistry), 2010, 22: 1819.
[16] 张进(Zhang J), 曹丹(Cao D), 陈家美(Chen J M), 王超英(Wang C Y). 材料导报(Materials Review), 2013, 19: 55.
[17] Lu C H, Zhou W H, Han B, Yang H H, Chen X, Wang X R. Anal. Chem., 2007, 79: 5457.
[18] Li J H, Dong R C, Wang X Y, Xiong H, Xu S F, Shen D Z, Song X L, Chen L X. RSC Adv., 2015, 5: 10611.
[19] Zhang Z, Li J H, Fu L W, Liu D Y, Chen L X. J. Mater. Chem. A, 2015, 3: 7437.
[20] Ning F J, Peng H L, Dong L L, Zhang Z, Li J H, Chen L X, Xiong H. J. Agric. Food Chem., 2014, 62: 11138.
[21] Liu D J, Yang Q, Jin S S, Song Y Y, Gao J F, Wang Y, Mi H F. Acta Biomater., 2014, 10: 769.
[22] Zhang Z, Li J H, Wang X Y, Shen D Z, Chen L X. ACS Appl. Mater. Interfaces, 2015, 7: 9118.
[23] Dan L,Wang H F. Anal. Chem., 2013, 85: 4844.
[24] Liu H L, Fang G Z, Li C M, Pan M F, Liu C C, Fan C, Wang S. J. Mater. Chem., 2012, 22: 19882.
[25] Guan G J, Liu R Y, Mei Q S, Zhang Z P. Chem. Eur. J., 2012, 18: 4692.
[26] Zhang Z, Chen L X, Yang F F, Li J H. RSC Adv., 2014, 4: 31507.
[27] Gao R X, Mu X R, Hao Y, Zhang L L, Zhang J J, Tang Y H. J. Mater. Chem. B, 2014, 2: 1733.
[28] Jin G Y, Li W, Yu S N, Peng Y Y, Kong J L. Analyst, 2008, 133: 1367.
[29] Liu J Z, Wang W Z, Xie Y F, Huang Y Y, Liu Y L, Liu X J, Zhao R, Liu G Q, Chen Y. J. Mater. Chem., 2011, 21: 9232.
[30] Yavuz C T, Prakash A, Mayo J T, Colvin V L. Chem. Eng. Sci., 2009, 64: 2510.
[31] Chen L G, Zhang X P, Sun L, Xu Y, Zeng Q L, Wang H, Xu H Y, Yu A M, Zhang H Q, Ding L. J. Agric. Food Chem., 2009, 57: 10073.
[32] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. J. Am. Chem. Soc., 2008, 130: 28.
[33] Tan C J,Tong Y W. Anal. Chem., 2007, 79: 299.
[34] Frickel N, Messing R, Gelbrich T, Schmidt A M. Langmuir, 2010, 26: 2839.
[35] Zhang M L, Zhang Z H, Liu Y N, Yang X, Luo L J, Chen J T, Yao S Z. Chem. Eng. J., 2011, 178: 443.
[36] Hu C H, Deng J, Zhao Y B, Xia L S, Huang K H, Ju S Q, Xiao N. Food Chem., 2014, 158: 366.
[37] Gao R X, Mu X R, Zhang J J, Tang Y H. J. Mater. Chem. B, 2014, 2: 783.
[38] Jing T, Du H R, Dai Q, Xia H, Niu J W, Hao Q L, Mei S R, Zhou Y K. Biosens. Bioelectron., 2010, 26: 301.
[39] Gai Q Q, Qu F, Liu Z J, Dai R J, Zhang Y K. J. Chromatogr. A, 2010, 1217: 5035.
[40] Lu F G, Li H J, Sun M, Fan L L, Qiu H M, Li X J, Luo C N. Anal. Chim. Acta, 2012, 718: 84.
[41] Li Y, Li X, Chu J, Dong C K, Qi J Y, Yuan Y X. Environ. Pollut., 2010, 158: 2317.
[42] Li Y, Dong C J, Chu J, Qi J Y, Li X. Nanoscale, 2011, 3: 280.
[43] Xu S F, Lu H Z, Chen L X, Wang X C. RSC Adv., 2014, 4: 45266.
[44] Han S, Li X, Wang Y, Su C. Anal. Methods, 2014, 6: 2855.
[45] Lin Z K, Cheng W J, Li Y Y, Liu Z R, Chen X P, Huang C J. Anal. Chim. Acta, 2012, 720: 71.
[46] Lin Z K, He Q Y, Wang L T, Wang X D, Dong Q X, Huang C J. J. Hazard. Mater., 2013, 252: 57.
[47] Xu S F, Li J H, Song X L, Liu J S, Lu H Z, Chen L X. Anal. Methods, 2013, 5: 124.
[48] Zhang Z, Li J H, Fu J Q, Chen L X. RSC Adv., 2014, 4: 20677.
[49] Titirici M M,Sellergren B. Chem. Mater., 2006, 18: 1773.
[50] Yu D J, Zeng Y B, Qi Y X, Zhou T S, Shi G Y. Biosens. Bioelectron., 2012, 38: 270.
[51] Zhang Z H, Liu L, Li H, Yao S Z. Appl. Surf. Sci., 2009, 255: 9327.
[52] Kan X W, Geng Z R, Wang Z L, Zhu J J. J. Nanosci. Nanotechnol., 2009, 9: 2008.
[53] Xu S F, Li J H, Chen L X. J. Mater. Chem., 2011, 21: 4346.
[54] Ma J, Yuan L H, Ding M J, Wang S, Ren F, Zhang J, Du S H, Li F, Zhou X M. Biosens. Bioelectron., 2011, 26: 2791.
[55] Zhang W, Qin L, He X W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 4560.
[56] Dakova I, Yordanova T, Karadjova I. J. Hazard. Mater., 2012, 231: 49.
[57] Pérez N, Whitcombe M J, Vulfson E N. Macromolecules, 2001, 34: 830.
[58] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 807.
[59] Carlson C A, Lloyd J A, Dean S L, Walker N R, Edmiston P L. Anal. Chem., 2006, 78: 3537.
[60] Li J H, Kendig C E, Nesterov E E. J. Am. Chem. Soc., 2007, 129: 15911.
[61] Tu R Y, Liu B H, Wang Z Y, Gao D M, Wang F, Fang Q L, Zhang Z P. Anal. Chem., 2008, 80: 3458.
[62] Deng Z T, Tong L, Flores M, Lin S, Cheng J X, Yan H, Liu Y. J. Am. Chem. Soc., 2011, 133: 5389.
[63] Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J. Nature, 2005, 436: 91.
[64] Tan L, Rang C C, Xu S Y, Tang Y W. Biosens. Bioelectron., 2013, 48: 216.
[65] Xu S F, Lu H Z, Li J H, Song X L, Wang A X, Chen L X, Han S B. ACS Appl. Mater. Interfaces, 2013, 5: 8146.
[66] Xu S F, Lu H Z. Chem. Commun., 2015, 51: 3200.
[67] Liu H L, Fang G Z, Wang S. Biosens. Bioelectron., 2014, 55: 127.
[68] Shen X T, Zhu L H, Liu G X, Yu H W, Tang H Q. Environ. Sci. Technol., 2008, 42: 1687.
[69] Shen X T, Zhu L H, Huang C X, Tang H Q, Yu Z W, Deng F. J. Mater. Chem., 2009, 19: 4843.
[70] Han D M, Dai G L, Jia W P, Liang H D. Micro & Nano Letters, 2010, 5: 76.
[71] Xu S F, Lu H Z, Chen L X. J. Chromatogr. A, 2014, 1350: 23.
[72] Xu S F, Chen L X, Li J H, Qin W, Ma J P. J. Mater. Chem., 2011, 21: 12047.
[73] Zhang Z, Xu S F, Li J H, Xiong H, Peng H L, Chen L X. J. Agric. Food Chem., 2012, 60: 180.
[74] Dong R C, Li J H, Xiong H, Lu W H, Peng H L, Chen L X. Talanta, 2014, 130: 182.
[75] Wang X Y, Kang Q, Shen D Z, Zhang Z, Li J H, Chen L X. Talanta, 2014, 124: 7.
[76] Xie C G, Li H F, Li S Q, Gao S. Microchim. Acta, 2011, 174: 311.
[77] Zhao P N, Liu S Q, Yu J H. J. Inorg. Organomet. Polym. Mater., 2011, 21: 846.
[78] Li J, Zhang X B, Liu Y X, Tong H W, Xu Y P, Liu S M. Talanta, 2013, 117: 281.
[79] Chen Y, He X W, Mao J, Li W Y, Zhang Y K. J. Sep. Sci., 2013, 36: 3449.
[80] Zhao Q, Li H Y, Xu Y, Zhang F S, Zhao J H, Wang L, Hou J, Ding H, Li Y, Jin H Y, Ding L. J. Chromatogr. A, 2015, 1376: 26.
[81] Guan G J, Zhang Z P, Wang Z Y, Liu B H, Gao D, Xie C G. Adv. Mater., 2007, 19: 2370.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[3] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[4] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[5] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[6] Xiaowen Xie, Xiaoguo Ma, Lihui Guo. Molecularly Imprinting Polymers for Detection and Removal of Environmental Endocrine Disruptors [J]. Progress in Chemistry, 2019, 31(12): 1749-1758.
[7] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[8] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[9] Zhang Xianfeng, Du Xuezhong. Protein Surface Imprinting Technology [J]. Progress in Chemistry, 2016, 28(1): 149-162.
[10] Zhang Dongjie, Zhang Congyun, Lu Ya, Hao Yaowu, Liu Yaqing. Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method [J]. Progress in Chemistry, 2015, 27(8): 1057-1064.
[11] Chen Siyuan, Dong Xu, Zha Liusheng. Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2015, 27(7): 831-840.
[12] Song Xiaokai, Zhou Yajing, Li Liang. Synthesis of Core-Shell Metal-Organic Frameworks [J]. Progress in Chemistry, 2014, 26(0203): 424-435.
[13] Li Lei, Li Yanxing, Yao Yao, Yao Lianghong, Ji Weijie, Au Chak-Tong. Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.
[14] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[15] Huang Ping, Chai Shigan, Yuan Jianjun, Lu Guohong, Yang Tingting, Cheng Shiyuan. Preparation of Silica/Polymer Core-Shell Hybrid Particles and Their Hollow Structures [J]. Progress in Chemistry, 2012, 24(01): 31-38.