中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 665-672 DOI: 10.7536/PC151023 Previous Articles   Next Articles

• Review and comments •

Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene

Zheng Na, Jie Suyun*, Li Bogeng   

  1. State Key Laboratory of Chemical Engineering, College of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY16B040001) and the Fundamental Research Funds for the Central Universities (No. 2016FZA4020).
PDF ( 4017 ) Cited
Export

EndNote

Ris

BibTeX

Hydroxyl-terminated polybutadiene (HTPB) is a low molecular-weight telechelic liquid rubber. Because of its various advantages, such as low glass transition temperature, good transparency, low viscosity, hard volatilization, oil resistance, good processability, HTPB has a wide range of applications in military and civilian fields. The properties of HTPB are mainly influenced by its chain microstructure. The different synthetic methods produce HTPB with different microstructure, which will result in the large difference in the properties. In addition, the chemical modifications of C=C double bonds in the main chain and hydroxyl groups in the chain ends lead to the formation of telechelic polymers with different molecular structure and various functional groups. After modifications, the different properties are endowed to HTPB and the application fields are also expanded. In this review, the research progress about the synthesis, chemical modifications and applications of HTPB is discussed in detail.

Contents
1 Introduction
2 Synthesis of HTPB
2.1 Free radical polymerization
2.2 Anionic polymerization
2.3 Ring-opening metathesis polymerization
2.4 Oxidolysis of polybutadiene
3 Chemical modifications of HTPB
3.1 Reactions with double bonds in the main chain
3.2 Reactions with hydroxyl groups in the chain ends
3.3 Reactions with carbon atoms at the terminal
4 Applications
4.1 Solid propellants
4.2 HTPB-based polyurethane
4.3 Block copolymers
5 Conclusion

CLC Number: 

[1] 董松(Dong S), 王新(Wang X), 高丽萍(Gao L P), 刘宇辉(Liu Y H), 王海军(Wang H J), 李艳(Li Y), 姜东升(Jiang D S), 蒋剑雄(Jiang J X). 弹性体(China Elastomerics), 2003, 13(3): 53.
[2] 梁滔(Liang T), 魏绪玲(Wei X L), 龚光碧(Gong G B), 吴江(Wu J). 合成橡胶工业(China Synthetic Rubber Industry), 2011, 34(3): 234.
[3] 程倩(Cheng Q), 梁基照(Liang J Z). 特种橡胶制品(Special Purpose Rubber Products), 2013, 34(4): 72.
[4] Krishnan P S G, Ayyaswamy K, Nayak P S K. J. Macromol. Sci., Part A: Pure Appl. Chem., 2013, 50(1): 128.
[5] 沈春晖(Shen C H), 沈景春(Shen J C), 吕锡元(Lv X Y), 丁彩凤(Ding C F), 刑政(Xing Z), 李德和(Li D H). 聚氨酯工业(Polyurethane Industry), 2001, 16(3): 17.
[6] Sadeghi G M M, Morshedian J, Barikani M. React. Funct. Polym., 2006, 66(2): 255.
[7] 赵铭(Zhao M), 胡春圃(Hu C P), 应圣康(Ying S K). 合成橡胶工业(China Synthetic Rubber Industry), 1986, 9(4): 270.
[8] 天虎(Tian H), 金关泰(Jin G T). 合成橡胶工业(China Synthetic Rubber Industry), 1983, 6(6): 451.
[9] 黄义(Huang Y), 鲁建民(Lu J M), 韩丙勇(Han B Y). 合成橡胶工业(China Synthetic Rubber Industry), 2010, 33(5): 353.
[10] Chen J, Lu Z, Pan G, Qi Y, Yi J, Bai H. Chin. J. Polym. Sci., 2010, 28(5): 715.
[11] Hillmyer M A, Grubbs R H. Macromolecules, 1993, 26: 872.
[12] Hillmyer M A, Grubbs R H. Macromolecules, 1996, 28: 8662.
[13] Hillmyer M A, Nguyen S T, Grubbs R H. Macromolecules, 1997, 30: 718.
[14] Bielawski C W, Scherman O A, Grubbs R H. Polymer, 2001, 42: 4939.
[15] Zhou Q, Jie S, Li B G. Ind. Eng. Chem. Res., 2014, 53(46): 17884.
[16] Zhou Q, Jie S, Li B G. Polymer, 2015, 67: 208.
[17] Ajaz A G. Rubber Chem. Technol., 1995, 68(3): 481.
[18] Singha N K, Bhattacharjee S, Sivaram S. Rubber Chem. Technol., 1997, 70: 309.
[19] Podesva J, Holler P. J. Appl. Polym. Sci., 1999, 74(13): 3203.
[20] Podesva J, Spevacek J, Dybal J. J. Appl. Polym. Sci., 1999, 74(13): 3214.
[21] Abata S, Hetflej J. J. Appl. Polym. Sci., 2002, 85(6): 1185.
[22] Lira C H, Nicolini L F, Dolinsky M C B. Ann. Magn. Reson., 2006, 5: 22.
[23] Latha P B, Adhinarayanan K, Ramaswamy R. Int. J. Adhes. Adhes., 1994, 14(1): 57.
[24] Aguiar M, de Menezes S C, Akcelrud L. Macromol. Chem. Phys., 1994, 195: 3937.
[25] Barcia F L, Amaral T P, Soares B G. Polymer, 2003, 44: 5811.
[26] Boutevin G, Ameduri B, Boutevin B, Joubert J P. J. Appl. Polym. Sci., 2000, 75(13): 1655.
[27] Wu W, Zeng X, Li H, Lai X, Yan Z. J. Macromol. Sci., Part A: Pure Appl. Chem., 2014, 51: 229.
[28] Patrick W R, Ronald E T. US 3652520, 1972.
[29] Ronald E T, Patrick W R. US 3733370, 1973.
[30] Kimura T, Yamakawa S. Electron. Lett., 1984, 20: 201.
[31] Hideaki M, Takashi S. J. Macromol. Sci. Chem., 1981, A16(6): 1065.
[32] Geetha J, Prabhakaran G. J. Polym. Mater., 1991, 8: 283.
[33] Boutevin G, Robin J J, Boutevin B, Amduri B. J. Appl. Polym. Sci., 2003, 90: 72.
[34] Benny A C, Thomas T E. J. Appl. Polym. Sci., 2004, 94: 1956.
[35] Nigam V, Setua D K, Mathur G N. J. Appl. Polym. Sci., 1998, 70: 537.
[36] Tyagi A K, Choudhary V, Varma I K. Eur. Polym. J., 1994, 30: 919.
[37] Deuri S A, Bhowmick A K. Mater. Chem. Phys., 1987, 18: 35.
[38] Smith T L, Magnusson A B. J. Polym. Sci., 1960, 42: 391.
[39] Sasaki N, Yokoyama T, Tanaka T. J. Polym. Sci.: Polym. Chem. Ed., 1973, 11: 1765.
[40] Dzierza S, Janacek J. J. Rubber Chem. Technol., 1977, 50: 934.
[41] Barcia F L, Abrahao M A. J. Appl. Polym. Sci., 2002, 83: 838.
[42] Reshmi S, Arunan E, Reghunadhan Nair C P. Ind. Eng. Chem. Res., 2014, 53: 16612.
[43] 柏海见(Bai H J), 陈继明(Chen J M), 齐永新(Qi Y X), 潘广勤(Pan G Q), 易建军(Yi J J), 鲁在君(Lu Z J). 弹性体(China Elastomerics), 2011, 21(3): 35.
[44] Sankar M R, Saha S, Meera S K, Jana T. Bull. Mater. Sci., 2009, 32: 507.
[45] Shankar R M, Roy T K, Jana T. J. Appl. Polym. Sci., 2009, 114: 732.
[46] Abdullah M, Gholamian F, Zareiee M R. J. Propul. Power, 2013, 29(6): 1343.
[47] Malkappa K, Jana T. Ind. Eng. Chem. Res., 2013, 52, (36): 12887.
[48] Malkappa K, Jana T. Ind. Eng. Chem. Res., 2015, 54 (30): 7423.
[49] 俞国星(Yu G X), 范晓东(Fan X D), 张翔宇(Zhang X Y), 龚彦(Gong Y). 中国胶粘剂(China Adhesives), 2006, 15(8): 37.
[50] Ninan K N, Krishnan K, Rajeev R, Viswanathan G. Propell. Explos. Pyrotech., 1996, 21: 199.
[51] Ganesh K, Sundarrajan S, Kishore K, Ninan K N, George B, Surianarayanan M. Macromolecules, 2000, 33(2): 326.
[52] Kothandaraman H, Venkatarao K, Chithambara Thanoo B. Polym. J., 1989, 21: 829.
[53] Zafar F, Sharmin E. Polyurethane. InTech, 2012, 11: 229.
[54] Coutinho F M B, Rocha M C G. Eur. Polym. J., 1991, 27: 213.
[55] Kothandaraman H, Nasar A S. J. Appl. Polym. Sci., 1993, 50: 1611.
[56] Kamath P, Srinivasan M, Krishnamurthy V N. Chin. J. Polym. Sci., 1993, 11: 284.
[57] Kamath P, Srinivasan M, Krishnamurthy V N. Chin. J. Polym. Sci., 1994, 12: 91.
[58] Dubois C, Desilets S, Ait-Kadi A, Tanguy P. J. Appl. Polym. Sci., 1995, 58: 827.
[59] Varghese A, Scariah K J, Bera S C, Rama R M, Sastri K S. Eur. Polym. J., 1996, 32: 79.
[60] Kincal D, Ozkar S. J. Appl. Polym. Sci., 1997, 66: 1979.
[61] Sekkar V, Krishnamurthy V N, Jain S R. J. Appl. Polym. Sci., 1997, 66: 1795.
[62] Singh M, Kanungo B K, Bansal T K. J. Appl. Polym. Sci., 2002, 85: 842.
[63] Sekkar V, Venkatachalam S, Ninan K N. Eur. Polym. J., 2002, 38: 169.
[64] Ramis X, Salla J M, Cadenato A, Morancho J M. J. Therm. Anal. Calorim., 2003, 72: 707.
[65] Catherine K B, Kannan K G, Ninan K N. J. Therm. Anal. Calorim., 2004, 78: 53.
[66] Vinnik R M, Roznyatovsky V A. J. Therm. Anal. Calorim., 2004, 75: 753.
[67] Manjari R, Joseph V C, Pandureng L P, Sriram T. J. Appl. Polym. Sci., 1993, 48: 271.
[68] Nazare A N, Deuskar V D, Asthana S N, Shrotri P G. J. Polym. Mater., 1993, 10: 213.
[69] Desai S, Thakore I M, Sarawade B D, Devi S. Eur. Polym. J., 2000, 36: 711.
[70] Sarkar S, Adhikari B. Polym. Degrad. STab., 2001, 73: 169.
[71] Sekkar V, Gopalakrishnan S, Devi K A. Eur. Polym. J., 2003, 39: 1281.
[72] Ghosh U K, Pradhan N C, Adhikari B. Desalination, 2007, 208: 146.
[73] 柴春鹏(Chai C P), 罗运军(Luo Y J), 郭素芳(Guo S F), 李国平(Li G P), 陈鹤(Chen H). 含能材料(Chinese Journal of Energetic Materials), 2008, 16(3): 301.
[74] Meng F L, Zheng S X, Zhang W A, Li H Q, Liang Q. Macromolecules, 2006, 39: 711.
[75] Lemoine M, Brachais C H, Boni G, Brachais L, Couvercelle J P. J. Macromol. Sci. A, 2010, 47: 794.
[76] Pitet L M, Hillmyer M A. Macromolecules, 2009, 42: 3674.
[77] Kim N Y, Yun Y S, Lee J Y, Choochottiros C, Pyo H R, Chin I J, Jin H J. Macromol. Res., 2011, 19(9): 943.
[78] Lee I, Panthani T R, Bates F S. Macromolecules, 2013, 46(18): 7387.
[79] Delgado P A, Hillmyer M A. RSC Adv., 2014, 4(26): 13266.
[80] Vasudevan V, Sundararajan G. Propell. Explos. Pyrot., 1999, 24: 295.
[81] Subramanian K. Eur. Polym. J., 1999, 35: 1403.
[82] Luo Y L, Yang X L, Xu F, Chen Y S, Zhao X. Colloid Polym. Sci., 2014, 292(5): 1061.
[1] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[2] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[3] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[4] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[5] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[6] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[7] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[8] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[9] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[10] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[11] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[12] Wu Yanjiao, Li Wei, Wu Qiong, Liu Shouxin. Preparation, Properties and Applications of Hydrochar [J]. Progress in Chemistry, 2016, 28(1): 121-130.
[13] Zhao Xiang, Zhao Zongyan. Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective [J]. Progress in Chemistry, 2015, 27(7): 913-934.
[14] Huang Qitong, Lin Xiaofeng, Li Feiming, Weng Wen, Lin Liping, Hu Shirong. Synthesis and Applications of Carbon Dots [J]. Progress in Chemistry, 2015, 27(11): 1604-1614.
[15] Yao Qiuhong, Lin Liping, Zhao Tingting, Chen Xi. Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots [J]. Progress in Chemistry, 2015, 27(11): 1523-1530.