中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 193-203 DOI: 10.7536/PC150935 Previous Articles   Next Articles

• Review and comments •

Phosphorus-Based Composite Anode Materials for Secondary Batteries

Li Jiaoyang, Wang Li*, He Xiangming*   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Basic Research Program of China (973) (No. 2013CB934000)and Beijing High School Young Talents Plan (YETP0157).
PDF ( 2331 ) Cited
Export

EndNote

Ris

BibTeX

Secondary batteries play important roles in energy storage. Secondary batteries such as lithium/sodium-ion batteries are promising for portable electronic devices, electric vehicles and green energy storage. The research on novel electrode materials is important for rechargeable battery of next generation. Phosphorus is attractive as anode materials due to its high theoretical specific capacity and abundant resources. However, there are many unknown aspects of phosphorus materials, which hinders its development and application, especially in the field of energy storage. This paper focuses on the properties of all the allotropes of phosphorus, and briefly introduces the research advances of phosphorus anode in recent years, including preparation, the effects of matrix structure on electrochemical performances and on the mechanisms. Meanwhile, the paper prospects the development trend of phosphorus based composites, aiming at further application in secondary batteries.

Contents
1 Introduction
2 The properties of all the allotropes of phosphorus
3 The research advances of phosphorus anode materials
4 The effect of matrix structure
4.1 Porous carbon
4.2 Nanotube
4.3 Graphene
5 Conclusion

CLC Number: 

[1] Scrosati B. Nature, 1995, 373(6515):557.
[2] 谢健(Xie J),赵新兵(Zhao X B),余红明(Yu H M),齐好(Qi H), 曹高劭(Cao G S),涂江平(Tu J P). 物理化学学报(Acta Phys. Chim. Sin.), 2006, 22(11):1409.
[3] Wachtler M, Winter M, Besenhard J O. Journal of Power Sources, 2002, 105(2):151.
[4] Park C M, Kim J H, Kim H, Sohn H J. Chemical Society Reviews, 2010, 39(8):3115.
[5] Derrien G, Hassoun J, Panero S, Scrosati B. Advanced Materials, 2007, 19:2336.
[6] Wang L, He X, Li J, Sun W, Gao J, Guo J, Jiang C. Angewandte Chemie International Edition, 2012, 51(36):9034.
[7] 徐环(Xu H), 陈龙(Chen L), 王雅东(Wang Y D), 潘牧(Pan M), 电源技术(Chinese Journal of Power Sources). 2014, 1:161.
[8] Holleman A, Wiberg N. "XV 2.1.3". Lehrbuch der Anorganischen Chemie (33rd ed.). de Gruyter. ISBN 3-11-012641-9.
[9] Berger L I. Semiconductor materials. CRC Press. 1996.84. ISBN 0-8493-8912-7.
[10] Durif M T, Averbuch-Pouchot A. Topics in Phosphate Chemistry. Singapore:World Scientific. 1996.3. ISBN 981-02-2634-9.
[11] Greenwood N N, Earnshaw A.Chemistry of the Elements (2nd ed.), Oxford:Butterworth-Heinemann.1997. ISBN 0-7506-3365-4.
[12] Threlfall R E. 100 Years of Phosphorus Making:1851~1951. Oldbury:Albright and Wilson Ltd., 1951.
[13] Mellor J W, Parkes G D. Modern Inorganic Chemistry, 1961, 2(2):18.
[14] Wiberg E, Wiberg N, Holleman A F. Inorganic Chemistry. Academic Press. 2001. 689. ISBN 978-0-12-352651-9.
[15] Hammond C R. The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. 2000.ISBN 0-8493-0481-4.
[16] Curry R. "Hittorf's Metallic Phosphorus of 1865". Lateral Science. 2014.
[17] 吴锋(Wu F). 中国材料进展(Materials China), 2009, 28(7/8):41.
[18] Ito T, Morimoto N, Sadanaga R. Acta Crystallographica., 1952, 5(6):775.
[19] Krebs H, Miiller K. H, Pakulla I, Ziirn G. Angewandte Chemie International Edition, 1955, 67:524.
[20] Thurn H, Krebs P H. Angewandte Chemie International Edition, 1966, 5:12.
[21] Cartz L, Srinivasa S R, Riedner R J, Jorgensen J D, Worlton T G. The Journal of Chemical Physics, 1979, 71(4):1718.
[22] Brown A, Rundqvist S. Acta Crystallographica, 1965, 19(4):684.
[23] Xia F, Wang H, Jia Y. Nat. Commun., 2014, 5:4458.
[24] Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F, Castro Neto A H. Physical Review B, 2014, 90(7):075434.
[25] Tran V, Soklaski R, Liang Y, Yang L. Physical Review B, 2014, 89(23):235319.
[26] Low T, Engel M, Steiner M, Avouris P. Physical Review B, 2014, 90(8):081408.
[27] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A. Nat. Commun., 2014, 5:4651.
[28] Liu H, Neal A. T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. ACS Nano, 2014, 8(4):4033.
[29] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C. Nano Letters, 2014, 14(12):6964.
[30] Liu X, Wood J D, Chen K S, Cho E, Hersam M C. The Journal of Physical Chemistry Letters, 2015, 6(5):773.
[31] Kang J, Wood J D, Wells S A, Lee J H, Liu X, Chen K S, Hersam M C. ACS Nano, 2015, 9(4):3596.
[32] Hanlon D, Backes C, Doherty E M, et al. "Liquid Exfoliation of Solvent-Stabilised Black Phosphorus:Applications Beyond Electronics". Cornell University. arXiv:1501.01881.
[33] Qian J F, Wu X Y, Cao Y L, Ai X P, Yang H X. Angewandte Chemie International Edition, 2013, 52(17):4633.
[34] Stan M C, Zamory J V, Passerini S, Nilges T, Winter M. Journal of Materials Chemistry A, 2013, 1(17):5293.
[35] Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Journal of Crystal Growth, 2014, 405(11):6.
[36] Park C M, Sohn H J. Adv.Mater., 2007, 19:2465.
[37] Bridgman P W. Journal of the American Chemical Society, 1914, 36(7):1344.
[38] Jacobs R B. J. Chem. Phys., 1937, 5:945.
[39] Sun L Q, Li M J, Sun K, Yu S H, Wang R S, Xie H M. J. Phys. Chem. C, 2012, 116(28):14772.
[40] Bai A, Wang L, Li J, He X, Wang J, Wang J. Journal of Power Sources, 2015, 289:100.
[41] Li W, Yang Y, Zhang G, Zhang Y W. Nano Letters, 2015, 15:1691.
[42] Song J, Yu Z, Gordin M L, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X. Nano Letters, 2014, 14:6329.
[43] Kim Y, Ha K H, Oh S M, Lee K T. Chemistry, 2014, 20:11980.
[44] Jung S C, Han Y K. The Journal of Physical Chemistry C, 2015, 119(22):12130.
[45] Shen Z, Hu Z, Wang W, Lee S. F, Chan D K, Li Y, Gu T, Yu J C. Nanoscale., 2014, 6(23):14163.
[46] Xia D, Shen Z, Huang G, Wang W, Yu J C, Wong P K. Environmental Science & Technology, 2015, 49(10):6264.
[47] Hembram K P S S, Jung H, Yeo B C, Pai S J, Kim S, Lee K R, Han S S. The Journal of Physical Chemistry C, 2015, 119(27):15041.
[48] Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. Advanced Materials, 2013, 25(22):3045.
[49] Li W J, Chou S L, Wang J Z, Liu H K, Dou S X. Nano Letters, 2013, 13(11):5480.
[50] Alcantara R, Ortiz G F, Tirado J L, Lavela P. Electrochemical & Solid State Letters, 2005, 8(4):A222.
[51] Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4):1271.
[52] Komaba S, Matsuura Y, Ishikawa T. Electrochemistry Communications, 2012, 21(7):65.
[53] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chemical Communications, 2012, 48(56):7070.
[54] Sun J, Zheng G, Lee H, Liu N, Wang H, Yao H, Yang W, Cui Y. Nano Letters, 2014, 14(8):4573.
[55] Marino C, Debenedetti A, Fraisse B, Favier F, Monconduit L. Electrochemistry Communications, 2011, 13(4):346.
[56] Iijima S. Nature, 1991, 354(6348):56.
[57] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S. Nat. Nano, 2008, 3(4):206.
[58] Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3):183.
[59] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8(3):902.
[60] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8(10):3498.
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[4] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[5] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[6] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[7] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[8] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[9] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[10] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[11] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[12] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[13] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[14] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.
[15] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.