中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 415-427 DOI: 10.7536/PC150927 Previous Articles   Next Articles

• Review and comments •

Internal Electric Fields within the Photocatalysts

Zhang Ling, Su Yang, Wang Wenzhong*   

  1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51472260, 51272303, 51272269).
PDF ( 2153 ) Cited
Export

EndNote

Ris

BibTeX

Separation of photogenerated electron-hole pairs is a key step to enhance the photocatalytic activity of semiconductor photocatalysts. Internal electric filed,as a potential driving force to separation of the carriers,has become one of the research hotspots in photocatalytic field recently.In this paper, the literatures about the enhancement of photocatalytic performance based on the internal electric field are reviewed. To align their potentials (Ef), charge transfer occurs between two different component semiconductor materials. This charge redistribution region is known as the space charge region. After the charge transfer, the accumulation of electrons on the semiconductor surface leads to upward band bending. The internal electric field can be formed due to the redistribution of charges, which may in turn facilitate the separation of electrons and holes for reactions. The upward or downward bending can drive the holes/electrons to run up for an oxidation reaction/a reduction reaction, respectively. Internal electric fields within photocatalysts can arise from ferroelectric phenomena, p-n/polymorph junctions,polar surface terminations,and nonlinear optical material. The internal electric fields within photocatalysts mitigate the effects of recombination and back-reaction, then to increase photochemical reactivity. The strategies for manipulation of internal fields are also discussed for the design of efficient photocatalysts. Finally,we highlight some crucial issues in engineering internal electric fields and provide tentative suggestions for future research on increasing their photocatalytic performance. Especially, the importance of using advanced physical technology and theoretical calculation method to characterize the distribution of internal electric field is emphasized.

Contents
1 Introduction
2 Internal electric fields in ferroelectrics
2.1 Internal electric fields in ferroelectrics and photocatalysis reactions
2.2 Factors impacted on the internal electric fields in ferroelectrics
2.3 The application of organic-inorganic perovskite structures in photocatalysts
3 Internal electric fields from p-n junction
3.1 Polaring process within p-n junction
3.2 Photocatalysts with p-n junction
3.3 Factors impacted on p-n junction
4 Internal electric fields from polymorph junctions
5 Polar surface terminations
5.1 Polar surface, internal electric fields and photocatalysis
5.2 Internal electric fields between crystal faces
6 Internal electric fields within noncentronsymmetric compounds
6.1 Nonlinear optical photocatalysts
6.2 Polaring in the photocatalysts with sillenite structure
7 Conclusion and outlook

CLC Number: 

[1] BP集团(Group BP).BP 世界能源统计2008 (BP Statistical Review of World Energy, June 2008). 2008 .48.
[2] Das S, Daud W M A W. Renewable and Sustainable Energy Reviews, 2014, 39:765.
[3] Yuan Y P, Ruan L W, Barber J, Loo S C J, Xue C. Energy Environ. Sci., 2014, 7: 3934.
[4] Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem. Rev., 2014, 114: 9987.
[5] Li H J, Zhou Y, Tu W G, Ye J H, Zou Z G. Adv. Funct. Mater., 2015, 25: 998.
[6] Rajh T, Dimitrijevic N M, Bissonnette M, Koritarov T, Konda V. Chem. Rev., 2014, 114:10177.
[7] Wang L Z, Sasaki T. Chem. Rev., 2014, 114: 9455.
[8] Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38: 253.
[9] Asahi R, Morikawa T, Irie H, Ohwaki T. Chem. Rev., 2014, 114: 9824.
[10] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555.
[11] Kavan L, Grätzel M, Gilbert S E, Klemenz C, Scheel H J. J. Am. Chem. Soc., 1996, 118: 6716.
[12] Yang J H, Wang D E, Han H X, Li C. Acc. Chem. Res., 2013, 46: 1900.
[13] Li L, Salvador P A, Rohrer G S. Nanoscale, 2014, 6: 24.
[14] Tiwari D, Dunn S. J. Mater. Sci,, 2009, 44: 5063.
[15] Damjanovic D. Rep. Prog. Phys., 1998, 61: 1267.
[16] Lines M E, Glass A M. Principles and Applications of Ferroelectric and Related Materials. Clarendon Press, Oxford, 1977.
[17] Setter N, Colla E L. Ferroelectric Ceramics. Basel: Birkhauser Verlag, 1993.
[18] Kanhere P, Chen Z. Molecules, 2014, 19: 19995.
[19] Wang W, Tade M O, Shao Z P. Chem. Soc. Rev., 2015, 44: 5371.
[20] Labhasetwar N, Saravanan G, Megarajan S K. Sci. Tech. Adv. Mater., 2015, 3: 036002.
[21] Kalinin S V, Bonnell D A, Alvarez T, Lei X, Ferris J H, Dunn S, Zhang Q. Nano Lett., 2002,2: 589.
[22] Bhardwaj A, Burbure N V, Gamalski A, Rohrer G S. Chem. Mater., 2010, 22: 3527.
[23] Schultz A M, Zhang Y L, Salvador P A, Rohrer G S. ACS Appl. Mater. Interfaces, 2011, 3: 1562.
[24] Zhen C, Yu J C, Liu G. Chem. Commun., 2014, 50:10416.
[25] Lines M E, Glass A M. Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 2001.
[26] Braithwaite N, Weaver G. Materials in Action Series-Electronic Materials inside Electronic Devices, London:Alden Press(London & Northampton) Ltd, 1998.
[27] Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D. Small, 2015, 11: 202.
[28] Sayed F N, Grover V, Mandal B P, Tyagi A K. J. Phys. Chem. C, 2013, 117: 10929.
[29] Zhang T T, Lei W Y, Liu P, Rodriguez J A, Yu J G, Qi Y, Liu G, Liu M H. Chem. Sci., 2015, 6: 4118.
[30] Inoue Y, Sato K, Sato K, Miyama H. J. Phys. Chem.,1986, 90: 2809.
[31] Akdogan E K, Rawn C J, Porter W D, Payzant E A, Safari A. J. Appl. Phys., 2005, 97: 084305.
[32] Yashima M, Hoshina T, Ishimura D, Kobayashi S, Nakamura W, Tsurumi T, Wada S. J. Appl. Phys.,2005, 98: 014313.
[33] Polking M J, Han M G, Yourdkhani A, Petkov V, Kisielowski C F, Volkov V V, Zhu Y, Caruntu G, Alivisatos A P, Ramesh R. Nat. Mater., 2012, 11:700.
[34] Burbure N V, Salvador P A, Rohrer G S. Chem. Mater., 2010, 22: 5823.
[35] Zhang Y, Schultz A M, Salvador P A, Rohrer G S. J. Mater. Chem., 2011, 21: 4168.
[36] Cui Y F, Briscoe J, Dunn S. Chem. Mater., 2013, 25: 4215.
[37] Hong K S, Xu H, Konishi H, Li X. J. Phys. Chem. Lett., 2010, 1: 997.
[38] Hong K S, Xu H, Konishi H, Li X. J. Phys. Chem. C, 2012,116: 13045.
[39] Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L. Nano Lett., 2015, 15: 2372.
[40] 吕思刘(Li S L). 青岛科技大学硕士论文(Master Degree Thesis of Qingdao University of Science & Technology), 2013.
[41] Gao P, Gratzel M, Nazeeruddin M K. Energy Environ. Sci.,2014, 7: 2448.
[42] Chen Y S, Manser J S, Kamat P V. J. Am. Chem. Soc., 2015, 137: 974.
[43] Gurudaya l, Sabba D, Kumar M H, Wong L H, Barber J, Gratzel M, Mathews N. Nano Lett., 2015, 15: 3833.
[44] Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Gratzel M. Science, 2014, 345: 1593.
[39] Khaselev O, Turner J A. Science, 1998, 280: 425.
[45] Ran J R, Zhang J, Yu J G. Chem. Soc. Rev., 2014, 43: 7787.
[46] Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43: 7520.
[47] Jiang T F, Xie T F, Zhang Y, Chen L P, Peng L L, Li H Y, Wang D J. Phys. Chem. Chem. Phys., 2010, 12: 15476.
[48] Marschall R. Adv. Funct. Mater., 2014, 24: 2421.
[49] Osterloh F E. Chem. Soc. Rev., 2013, 42: 2294.
[50] Zhao Z W, Sun Y J, Dong F. Nanoscale, 2015, 7: 15.
[51] Liu G, Wang L Z, Yang H G. J. Mater. Chem,, 2010, 20: 831.
[52] Lin Y, Xu Y, Mayer M T, Simpson Z I, McMahon G, Zhou S, Wang D. J. Am. Chem. Soc., 2012, 134: 5508.
[53] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002, 4:198.
[54] Li L, Liu X, Zhang Y, Nuhfer N T, Barmak K, Salvador P A, Rohrer G S. ACS Appl. Mater. Interfaces, 2013, 5: 5064.
[55] Tao J G, Chai J W, Guan L X, Pan J S, Wang S J. Appl. Phys. Lett., 2015, 106: 081602.
[56] Hu C C, Nian J N, Teng H. Sol. Energy Mater. Sol. Cells, 2008, 92: 1071.
[57] Chen S F, Zhao W, Liu W, Zhang H Y, Yu X L. Chem. Eng. J., 2009,155: 466.
[58] Lu M X, Shao C L, Wang K X, Lu N, Zhang X, Zhang P, Zhang M Y, Li X H, Liu Y C. ACS Appl. Mater. Inter faces 2014, 6: 9004.
[59] Hengerer R, Kavan L, Krtil P, Gratzel M. J. Electrochem. Soc., 2000, 147: 1467.
[60] Zhang H Z, Baneld J F. J. Phys. Chem. B, 2000, 104: 3481.
[61] Yang D, Liu H, Zheng Z, Yuan Y, Zhao J C, Waclawik E R, Ke X, Zhu H. J. Am. Chem. Soc., 2009, 131: 17885.
[62] Chan C K, Porter J F, Li Y G, Guo W, Chan C M. J. Am. Ceram. Soc., 1999, 82: 566.
[63] Zhang Q H, Gao L, Guo J K. Appl. Catal. B, 2000, 26: 207.
[64] Wang X, Xu Q, Li M, Shen S, Wang X, Wang Y, Feng Z, Shi J, Han H, Li C. Angew. Chem. Int. Ed., 2012, 51: 13089.
[65] Jin S Q, Wang X, Wang X L, Ju M G, Shen S, Liang W Z, Zhao Y, Feng Z C, Playford H Y, Walton R I, Li C.J. Phys. Chem. C, 2015, 119: 18221.
[66] Liu M C, Jing D W, Zhou Z H. Nat. Comm., 2013, 4 : 2278.
[67] Sun S D, Wang S L, Deng D C. New J. Chem., 2013, 37: 3679.
[68] Sun S D, Deng D C, Song X P. Phys. Chem. Chem. Phys., 2013, 15: 15964.
[69] Sun S D, Deng D C, Kong C C. Dalt. Trans., 2012, 41: 3214.
[70] Liu M C, Wang L Z, Lu G Q, Yao X D, Guo L J. Energy Environ. Sci., 2011, 4: 1372.
[71] Wang Z L. Annu. Rev. Phys. Chem., 2004, 55: 159.
[72] Noguera C. J. Phys.: Condens. Matter., 2000,12: R367.
[73] Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner T S, Thornton G, Harrison N M. Phys. Rev. Lett., 2001,86: 3811.
[74] Freundy H J, Kuhlenbecky H, Staemmler V. Rep. Prog. Phys., 1996, 59: 283.
[75] Wander A, Harrison N M. J. Chem. Phys., 2001,115: 2312.
[76] Yamaguchi H, Komiyama T, Chonan Y, Ishidsuka Y, Ito R, Aoyama T. Phys. Status Solidi C, 2010, 7: 300.
[77] Meyer B, Marx D. Phys. Rev. B, 2003, 67: 035403.
[78] Goniakowski J, Finocchi F, Noguera C. Rep. Prog. Phys., 2008, 71: 016501.
[79] Dulub O, Diebold U, Kresse G. Phys Rev. Lett., 2003, 90: 016102.
[80] Lai J H, Su S H, Chen H H, Huang J C A, Wu C L. Physical Rev. B, 2010, 82: 155406.
[81] Juez A I, Viñes F, Gar?I O L, Gar??aa M F, Illas F. J. Mater. Chem. A, 2015, 3: 8782.
[82] Huang M L, Yan Y, Feng W H, Weng S X, Zheng Z Y, Fu X Z, Liu P. Cryst. Growth Des., 2014, 14: 2179.
[83] Mclaren A, Solis T V, Li G, Tsang S C. J. Am. Chem. Soc., 2009, 131: 12540.
[84] Xu H L, Wang W Z, Zhu W.J. Phys. Chem. B, 2006, 110: 13829.
[85] Liu B, Yang H Q, Wei A H, Zhao H, Ning L C, Zhang C J, Liu S Z. Appl. Catal. B:Environ., 2015,172/173: 165.
[86] Liu B, Ning L C, Zhao H, Zhang C J, Yang H Q, Liu S Z. Phys. Chem. Chem. Phys., 2015, 17: 13280.
[87] Bai S, Jiang J, Zhang Q, Xiong Y J. Chem. Soc. Rev., 2015,44: 2893.
[88] Ohno T, Sarukawa K, Matsumura M. New J. Chem., 2002, 26: 1167.
[89] Pan J, Liu G, Lu G Q, Cheng H M. Angew. Chem. Int. Ed. 2011, 50: 2133.
[90] Zheng Z K, Huang B B, Lu J, Qin X Y, Zhang X Y, Dai Y. Chem. Eur. J., 2011, 17: 15032.
[91] Yu J G, Low J X, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014, 136: 8839.
[92] Ye L Q, Liu J Y, Tian L H, Peng T Y, Zan L. Appl. Catal. B:Environ., 2013, 134/135: 60.
[93] Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Nat. Commun., 2013, 4: 1432.
[94] Zhu J, Fan F T, Chen R T, An H Y, Feng Z C, Li C. Angew. Chem. Int. Ed., 2015, 54: 9111.
[95] Wang B, Shen S H, Guo L J. Appl. Catal. B:Environ., 2015, 166/167: 320.
[96] Lee S, Liang C W, Martin L W. ACS Nano, 2011, 5: 3736.
[97] Sun S D, Kong C C, You H J, Song X P, Ding B J, Yang Z M. CrystEngComm, 2012, 14: 40.
[98] Li P, Zhou Y, Zhao Z Y, Xu Q F, Wang X Y, Xiao M, Zou Z G. J. Am. Chem. Soc., 2015, 137: 9547.
[99] Wu Y C, Chen C T. J. Cryst. Growth., 1996, 166: 533.
[100] Fan X Y, Zang L, Zhang M, Qiu H S, Wang Z, Yin J, Jia H Z, Pan S L, Wang C Y. Chem. Mater., 2014, 26: 3169.
[101] Li M M, Dai Y., Ma X C, Li Z J, Huang B B. Phys. Chem. Chem. Phys., 2015, 17: 17710.
[102] Huang H W, He Y, Guo Y X, He R, Lin Z S, Zhang Y H. Solid State Sci., 2015, 46: 37e42.
[103] Huang H W, He Y, He R, Lin Z S, Zhang Y H, Wang S C. Inorg. Chem., 2014, 53: 8114.
[104] Wang W J, Huang B B, Ma X C, Wang Z Y, Qin X Y, Zhang X Y, Dai Y, Whangbo M H.Chem. Eur. J., 2013, 19: 14777.
[105] Li Z J, Dai Y J, Ma X C, Zhu Y T, Huang B B. Phys. Chem. Chem. Phys., 2014, 16: 3267.
[106] Wang G J, Jing Y, Ju J, Yang D F, Yang J, Gao W L, Cong R H, Yang T. Inorg. Chem., 2015, 54: 2945.
[107] Zhang R, Dai Y, Lou Z Z, Li Z J, Wang Z Y, Yang Y M, Qin X Y, Zhang X Y, Huang B B. CrystEngComm, 2014, 16: 4931.
[108] Li J, Yu Y, Zhang L Z. Nanoscale, 2014, 6: 8473.
[109] An H Z, Du Y, Wang T M, Wang C, Hao W C, Zhang J Y.Rare Metal., 2008, 27:243.
[110] Zhang L, Wang W Z, Sun S M, Jiang D, Gao E P. Appl. Catal. B: Environ., 2015, 162: 470.
[111] Li J, Zhang L Z, Li Y J, Yu Y. Nanoscale, 2014, 6: 167.
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[11] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[12] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[13] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[14] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[15] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.