中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 1-8 DOI: 10.7536/PC150906 Previous Articles   Next Articles

• Review and comments •

Ring Openings of tert-Cyclobutanols: New Strategy towards the Synthesis of γ-Substituted Ketones via C—C Bond Cleavage

Yan Hong, Zhu Chen*   

  1. Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21402134) and the Jiangsu Provincial Natural Science Foundation of China(No. BK20140306).
PDF ( 1840 ) Cited
Export

EndNote

Ris

BibTeX

Ketone is an important structural moiety in organic chemistry due to its wide occurrence in organic compounds and the highly transformable ability into other functionalities. Therefore, the efficient synthesis of ketones is of great significance. Recently, the ring-opening functionalization of tert-cyclobutanols represents one of the most important approaches to synthesize γ-substituted alkyl ketones. A variety of functional groups can be efficiently introduced to the γ-position of carbonyl via the regioselective C—C bond cleavage and a new chemical bond (C—C, C—N, C—O, C—F, etc.) formation. Two major pathways might be involved in the ring-opening reactions of tert-cyclobutanols: a) transition metals, such as Pd(Ⅱ) and Rh(Ⅰ), catalyzed β-carbon elimination of tert-cyclobutanols, and b) radical-mediated ring opening via the single electron oxidation of tert-cyclobutanols. The recent advances in the ring openings of tert-cyclobutanols and the related mechanistic details are described in this review.

Contents
1 Introduction
2 Transition-metal catalyzed ring openings of tert-cyclobutanols via β-carbon elimination
2.1 Pd-catalyzed ring-opening reactions of tert-cyclobutanols
2.2 Rh-catalyzed ring-opening reactions of tert-cyclobutanols
3 Radical-mediated ring openings of tert-cyclobutanols
3.1 Oxidative ring opening of tert-cyclobutanols to construct carbon-carbon bond
3.2 Oxidative ring opening of tert-cyclobutanols to construct carbon-heteroatom bonds
4 PIDA-mediated ring-opening hydroxylation of tert-cyclobutanols via carbocation pathway
5 Conclusion and outlook

CLC Number: 

[1] Singh P N D, Muthukrishnan S, Murthy R S, Klima R F, Mandel S M, Hawk M, Yarbrough N, Gudmundsdóttir A D. Tetrahedron Lett., 2003, 44: 9169.
[2] Sankuratri N, Janzen E G, West M S, Poyer J L. J. Org. Chem., 1997, 62: 1176.
[3] Kritzyn A M, Komissarov V V. Russ. J. Bioorg. Chem., 2005, 31: 549.
[4] Merschaert A, Boquel P, van Hoeck J P, Gorissen H, Borghese A, Bonnier B, Mockel A, Napora F. Org. Process Res. Dev., 2006, 10: 776.
[5] Zanardi A, Mata J A, Peris E, Organometallics, 2009, 28: 1480.
[6] Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett., 2012, 14: 3044.
[7] Ruan J, Saidi O, Iggo J A, Xiao J. J. Am. Chem. Soc., 2008, 130: 10510.
[8] Marek I, Masarwa A, Delaye P O, Leibeling M. Angew. Chem. Int. Ed., 2015, 54: 414.
[9] Seiser T, Saget T, Tran D N, Cramer N. Angew. Chem. Int. Ed., 2011, 50: 7740.
[10] Souillart L, Cramer N. Chem. Rev., 2015, DOI: 10.1021/acs.chemrev.5b00138.
[11] Nishimura T, Ohe K, Uemura S. J. Am. Chem. Soc., 1999, 121: 2645.
[12] Nishimura T, Uemura S. J. Am. Chem. Soc. 1999, 121: 11010.
[13] Nishimura T, Matsumura S, Maeda Y, Uemura S. Chem. Commun., 2002, 50.
[14] Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc., 2003, 125: 8862.
[15] Ziadi A, Martin R. Org. Lett., 2012, 14: 1266.
[16] Ziadi A, Correa A, Martin R. Chem. Commun., 2013, 49: 4286.
[17] Seiser T, Cramer N. J. Am. Chem. Soc., 2010, 132: 5340.
[18] Ishida N, Nakanishi Y, Murakami M. Angew. Chem. Int. Ed., 2013, 52: 11875.
[19] Griller D, Ingold K U. Acc. Chem. Res., 1980, 13: 317.
[20] Liu K E, Johnson C C, Newcomb M, Lippard S J. J. Am. Chem. Soc., 1993, 115: 939.
[21] Meyer K, Rocek J. J. Am. Chem. Soc., 1972, 94: 1209.
[22] Rocek J, Radkowsky A E. J. Am. Chem. Soc., 1968, 90: 2986.
[23] Minisci F. Synthesis, 1973, 1.
[24] Kapustina N I, Sokova L L, Ignatenko A V, Nikishin G I. Russ. Chem. Bull., 1993, 42: 1839.
[25] Nikishin G I, Sokova L L, Kapustina N I. Russ. Chem. Bull. Int. Ed., 2001, 50: 1118.
[26] Nikishin G I, Sokova L L, Kapustina N I. Russ. Chem. Bull. Int. Ed., 2002, 10: 1812.
[27] Kapustina N I, Sokova L L, Nikishin G I. Russ. Chem. Bull., 1996, 45: 1246.
[28] Kapustina N I, Sokova L L, Makhaev V D, Petrava L A, Nikishin G I. Russ. Chem. Bull., 1999, 48: 2080.
[29] Casey B M, Eakin C A, Flowers R A. Tetrahedron Lett., 2009, 50: 1264.
[30] Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications, 2nd ed. Wiley-VCH, Weinheim, 2013.
[31] Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. (Eds. Gouverneur V, Muller K). London: Imperial College Press, 2012.
[32] Ni C, Zhu L, Hu J. Acta Chim. Sinica, 2015, 73: 90.
[33] Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc., 2015, 137: 3490.
[34] Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem. Lett., 2015, 44: 821.
[35] Ren R, Zhao H, Huan L, Zhu C. Angew. Chem. Int. Ed., 2015, 54: 12692.
[36] Yu J, Zhao H, Liang S, Bao X, Zhu C. Org. Biomol. Chem., 2015, 13: 7924.
[37] Fujioka H, Komatsu H, Miyoshi A, Murai K, Kita Y. Tetrahedron Lett., 2011, 52: 973.
[38] Fan X, Zhao H, Zhu C. Acta Chim. Sinica, 2015, 73: 979.
[39] Yu J, Yan H, Zhu C. Angew. Chem. Int. Ed., 2016, 55: 1143.
[40] Ren R, Wu Z, Xu Y, Zhu C. Angew. Chem. Int. Ed., 2016, DOI: 10.1002/anie.201510973.
[41] Fan X, Zhao H, Yu J, Bao X, Zhu C. Org. Chem. Front., 2016, DOI: 10.1039/c5qo00368g.
[1] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[2] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[3] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[4] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[5] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[6] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[7] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[8] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[9] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[10] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[11] Ning Li, Xin Hu, Liang Fang, Jiahui Kou, Yaru Ni, Chunhua Lu. Organocatalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(6): 791-799.
[12] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[13] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[14] Yiling Huang, Wenting Wei*. Organic Radical Reactions in Water Medium [J]. Progress in Chemistry, 2018, 30(12): 1819-1826.
[15] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.