中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 269-283 DOI: 10.7536/PC150904 Previous Articles   Next Articles

• Review and comments •

Synthesis, Properties and Applications of Dicationic Ionic Liquids

Yang Xuzhao1,2*, Wang Jun2, Fang Yun1*   

  1. 1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
    2. Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21176228), the Science and Technology Planning Project of Henan Province (No. 132102210188), the Foundation for University Key Teacher of Henan Province (No. 2013GGJS-108), the Science and Technology Research Project of Zhengzhou City (No.141PQYJS555), and the Foundation of Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Jiangnan University (No. JDSJ2013-01).
PDF ( 2426 ) Cited
Export

EndNote

Ris

BibTeX

Dicationic ionic liquids (DILs) are a fascinating class of novel ionic liquids consisting of two cationic moieties combined with a spacer and two anionic moieties. DILs have recently received more and more attention because of their unique and interesting advantages compared with traditional monocationic ionic liquids while maintaining the same desirable solvation properties, such as higher thermal and chemical stability, excellent structural tunability, superior heat capacity and so on. Given the tunability of DILs, they are more suitable for use in a plethora of science and engineering applications, such as high-temperature organic synthesis, chromatography stationary phases, stable quasi-solid-state dye-sensitized solar cell, separation process, and novel high-temperature lubricant. The recent research progresses of DILs are systematicly reviewed in this paper. General methods for synthesis of various types of DILs, including symmertrical and asymmertrical DILs, are summarized. Properties of DILs in terms of melting point, density, viscosity, heat capacity, thermal stability, surface and interfacial properties, toxicity and biodegradability are respectively described in detail. The structures and molecular dynamics of DILs are introduced in brief. The applications of DILs in organic synthesis, material preparation and electrochemical field are briefly overviewed. In addition, the application prospect and development trend of DILs are finally prospected.

Contents
1 Introduction
2 Synthesis of DILs
2.1 Synthesis of symmertrical DILs
2.2 Synthesis of asymmertrical DILs
3 Properties of DILs
3.1 Physicochemical properties
3.2 Surface & interfacial properties
3.3 Toxicity and biodegradability
4 Structures and molecular dynamics of DILs
4.1 Structures
4.2 Molecular dynamics
5 Applications of DILs
5.1 Organic synthesis
5.2 Material preparation
5.3 Electrochemical field
6 Conclusion

CLC Number: 

[1] Rogers R D, Seddon K R. Science, 2003, 302:792.
[2] Rogers R D. Nature, 2007, 447:917.
[3] Welton T. Chem. Rev., 1999, 99:2071.
[4] Sheldon R. Chem. Commun., 2001, (23):2399.
[5] Marsh K N, Boxall J A, Lichtenthaler R. Fluid Phase Equilibria, 2004, 219:93.
[6] Short P L. Chem. Eng. News, 2006, 84:15.
[7] Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V, Croce F. J. Phys. Chem. B, 2009, 113:10607.
[8] Han X X, Armstrong D W. Org. Lett., 2005, 7:4205.
[9] Namboodiri V V, Varma R S. Org. Lett., 2002, 4(18):3161.
[10] Singh R P, Shreeve J M. Chem. Commun., 2003, 12:1366.
[11] Anderson J L, Ding R, Ellern A, Armstrong D W. J. Am. Chem. Soc., 2005, 127(2):593.
[12] Liu Q, Rantwijk F, Sheldon R A. J. Chem. Technol. Biotechnol., 2006, 81:401.
[13] Bronger R P J, Silva S M, Kamera P C J, van Leeuwen P W N M. Chem. Commun., 2002, 11:3044.
[14] Jin C M, Ye C F, Phillips B S, Zabinski J S, Liu X Q, Liud W, Shreeve J M. J. Mater. Chem., 2006, 16:1529.
[15] 王军(Wang J), 张真真(Zhang Z Z), 杨许召(Yang X Z), 李刚森(Li G S). 化学试剂(Chemical Reagents), 2009, 31:719.
[16] Yang X Z, Wang J, Zhang Z Z, Li G S. J. Chem. Eng. Data, 2009, 54:1385.
[17] Yang X Z, Wang J. J. Chem. Eng. Data, 2010, 55:1708.
[18] Yang X Z, Wang J. J. Chem. Eng. Data, 2010, 55:2322.
[19] Bhatt D R, Maheria K C, Parikh J K. RSC Adv., 2015, 5:12139.
[20] Subramaniam P, Mohamad S, Alias Y. Int. J. Mol. Sci., 2010, 11:3675.
[21] D'Anna F, Gunaratne H Q N, Lazzara G, Noto R, Rizzo C, Seddon K R. Org. Biomol. Chem., 2013, 11:5836.
[22] Xiao J C, Shreeve J M. J. Org. Chem., 2005, 70:3072.
[23] Ding Y S, Zha M, Zhang J, Wang S S. Colloids Surf. A:Physicochem. Eng. Aspects, 2007, 298:201.
[24] Baltazar Q Q, Chandawalla J, Sawyer K, Anderson J L. Colloids Surf. A:Physicochem. Eng. Aspects, 2007, 302:150.
[25] Frizzo C P, Gindri I M, Bender C R, Tier A Z, Villetti M A, Rodrigues D C, Machado G, Martins M A P. Colloids Surf. A:Physicochem. Eng. Aspects, 2015, 468:285.
[26] Nacham O, Martín-Pérez A, Steyer D J, Trujillo-Rodríguez M J, Anderson J L, PinoV, Afonso A M. Colloids Surf. A:Physicochem. Eng. Aspects, 2015, 469:224.
[27] Liu X F, Xiao L F, Wu H, Chen J, Xia C. Helv. Chim. Acta, 2009, 92:1014.
[28] Jadhav A H, Chinnappan A, Patil R H, Kostjuk S V, Kim H. Chem. Eng. J., 2014, 243:92.
[29] Wang Y L, Li Z, Luo J, Liu Z L. J. Chin. Chem. Soc., 2013, 60:1431.
[30] Wang Y H, Lu T T. Chiang Mai J. Sci., 2014, 41:138.
[31] Liu W T, Wang Y F, Li W, Yang Y, Wang N N, Song Z X, Xia X F, Wang H. J. Catal. Lett., 2015, 145:1080.
[32] Zhang Z X, Zhou H Y, Yang L, Tachibana K, Kamijima K, Xu J. Electrochim. Acta, 2008, 53:4833.
[33] Payagala T, Huang J M, Breitbach Z S, Sharma P S, Armstrong D W. Chem. Mater, 2007, 19:5848.
[34] 王军(Wang J), 武金超(Wu J C), 杨许召(Yang X Z), 王满满(Wang M M), 苗进辉(Miao J H). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 2014, 28:944.
[35] Yu G Q, Yan S Q, Zhou F, Liu X Q, Liu W M, Liang Y M. Tribol. Lett., 2007, 25:197.
[36] Chang J C, Ho W Y, Sun I W, Li J P, Ren P B. Tetrahedron, 2010, 66:6150.
[37] Kärnä M K, Lahtinen M K, Valkonen J U. J. Chem. Eng. Data, 2013, 58:1893.
[38] Wang J, Wang M M, Yang X Z, Zou W Y, Chen X. Chin. J. Chem. Eng., 2015, 23(5):816.
[39] Shirota H, Mandai T, Fukazawa H, Kato T. J. Chem. Eng. Data, 2011, 56:2453.
[40] Claros M, Galleguillos H R, Brito I, Graber T A. J. Chem. Eng. Data, 2012, 57:2147.
[41] 杨许召(Yang X Z),王军(Wang J),孙新科(Sun X K).北京化工大学学报(自然科学版)(Journal of Beijing University of Chemical Technology (Natural Science Edition)),2011, 38(2):27.
[42] 杨许召(Yang X Z),王军(Wang J),孙新科(Sun X K). 化学工程(Chemical Engineering (China)), 2011, 39(4):61.
[43] Ge R, Hardacre C, Jacquemin J, Nancarrow P, Rooney D W. J. Chem. Eng. Data, 2008, 53:2148.
[44] Valderrama J O, Toro A, Rojas R E. J. Chem. Thermodyn., 2011, 43:1068.
[45] Gardas R L, Coutinho J A P. Ind. Eng. Chem. Res., 2008, 47:5751.
[46] Mahrova M, Pagano F, Pejakovic V, Valea A, Kalin M, Igartua A, Tojo E. Tribol. Int., 2015, 82:245.
[47] Gai C, Zhang Y H, Chen W T, Zhang P, Dong Y P. Bioresour. Technol., 2013, 150:139.
[48] Vrande D? i Dc' N S, Erceg M, Jaki Dc' M, Klari Dc' L. Thermochim. Acta, 2010, 498:71.
[49] Mustata F St C, Tudorachi N, Mustata A, Mustata F. J. Therm. Anal. Calorim., 2015, 120:1703.
[50] Zhang Z X, Yang L, Luo S H, Tian M, Tachibana K, Kamijima K. J. Power Sources, 2007, 167:217.
[51] Haddad B, Villemin D, Belarbi E, Bar N, Rahmouni M. Arab. J. Chem., 2014, 7:781.
[52] Zafer C, Ocakoglu K, Ozsoy C, Icli S. Electrochim. Acta, 2009, 54:5709.
[53] Casal-Dujat L, Griffiths P C, Rodríguez-Abreu C, Solans C, Rogers S, Pérez-García L. J. Mater. Chem. B, 2013, 1:4963.
[54] Luo Y R, Wang S H, Li X Y, Yun M X, Wang J J, Sun Z J. Ecotoxicol. Environ. Saf., 2010, 73:1046.
[55] Ma J G, Dong X Y, Fang Q, Li X Y, Wang J J. J. Biochem. Mol. Toxicol., 2014, 28:69.
[56] Li X Y, Dong X Y, Bai X, Liu L, Wang J J. Environ. Toxicol., 2014, 29:697.
[57] Steudte S, Bemowsky S, Mahrova M, Bottin-Weber U, Tojo-Suarez E, Stepnowski P, Stolte S. RSC Adv., 2014, 4:5198.
[58] Gindri I M, Siddiqui D A, Bhardwaj P, Rodriguez L C, Palmer K L, Frizzo C P, Martins M A P, Rodrigues D C. RSC Adv., 2014, 4:62594.
[59] Silva F A e, Siopa F, Figueiredo B F H T, Gonçalves A M M, Pereira J L, Gonçalves F, Coutinho J A P, Afonso C A M, Ventura S P M. Ecotoxicol. Environ. Saf., 2014, 108:302.
[60] Kärnä M, Lahtinen M, Hakkarainen P L, Valkonen J. Aust. J. Chem., 2010, 63:1122.
[61] Sun H, Zhang D J, Liu C B, Zhang C Q. J. Mol. Struct.:THEOCHEM, 2009, 900:37.
[62] Lee M, Niu Z B, Slebodnick C, Gibson H W. J. Phys. Chem. B, 2010, 114:7312.
[63] Farmanzadeh D, Soltanabadi A, Yeganegi S. J. Chin. Chem. Soc., 2013, 60:551.
[64] Bodo E, Chiricotto M, Caminiti R. J. Phys. Chem. B, 2011, 115:14341.
[65] Lopes J N C, Padua A A H. J. Phys. Chem. B, 2004, 108:16893.
[66] Yeganegi S, Soltanabadi A, Farmanzadeh D. J. Phys. Chem. B, 2012, 116:11517.
[67] Bhargava B L, Klein M L. J. Chem. Theory Comput., 2010, 6:873.
[68] Li S, Feng G, Cummings Peter T. J. Phys.:Condens. Matter, 2014, 26:284106.
[69] Priede E, Nakurte I, Zicmanis A. Synth. Commun., 2014, 44:1803.
[70] Khosropour A R, Noei J, Mirjafari A. J. Iran. Chem. Soc., 2010, 7:752.
[71] Bronger R P J, Silva S M, Kamer P C J, Leeuwen P W N M. Dalton Trans., 2004, 10:1590.
[72] Zhang C Y, Shi R B, Chen C Y, Jin C M. Chin. J. Org.Chem., 2013, 33:611.
[73] Wang Y L, Luo J, Liu Z L. Appl. Organometal. Chem., 2013, 27:601.
[74] Huang Q, Qiu J B, Li L M, Xu G H, Zhou Z G. Transition Met. Chem., 2014, 39:661.
[75] Wang Y L, Luo J, Liu Z L. J. Organomet. Chem., 2013, 739:1.
[76] Fang D, Yang J M, Jiao C M. ACS Catal., 2011, 1:42.
[77] Zhao D S, Liu M S, Zhang J, Li J P, Ren P B. Chem. Eng. J., 2013, 221:99.
[78] Jadhav A H, Lee K Y, Koo S H, Seo J G. RSC Adv., 2015, 5:26197.
[79] Jadhav V H, Kim J G, Jeong H J, Kim D W. J. Org. Chem., 2015, 80:7275.
[80] Yavari I, Mahjoub A R, Kowsari E, Movahedi M. J. Nanopart. Res., 2009, 11:861.
[81] Sabbaghann M, Beheshtian J, Mirsaeidi S A M. Ceram. Int., 2014, 40:7769.
[82] Sahiner N, Yasar A O, Aktas N. J. Ind. Eng. Chem., 2015, 23:100.
[83] Kore R, Satpati B, Srivastava R. Chem. Eur. J., 2011, 17:14360.
[84] Li S, Zhang P F, Fulvio P F, Hillesheim P C, Feng G, Dai S, Cummings P T. J. Phys.:Condens. Matter, 2014, 26:284105.
[85] Zhang C, Ingram I C, Hantao L W, Anderson J L. J. Chromatogr. A, 2015, 1386:89.
[86] Rizzo C, D'Anna F, Marullo S, Vitale P, Noto R. Eur. J. Org. Chem., 2014, 2014:1013.
[87] Lim S R, Hwang J, Kim C S, Park H S, Cheong M, Kim H S, Lee H. J. Hazard. Mater., 2015, 289:63.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[11] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[12] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[15] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.