中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 363-374 DOI: 10.7536/PC150820 Previous Articles   Next Articles

• Review and comments •

Advances in DMF and C5/C6 Alkanes Production from Lignocellulose

Yang Yue1,2, Liu Qiying1, Cai Chiliu1,3, Tan Jin1, Wang Tiejun1, Ma Longlong1,2*   

  1. 1. key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51576199), the National Basic Research Program of China (973 Program) (No.2012CB215304),and the Science and Technology Plan Key Project in Guangdong Province of China (No.2014A010106019).
PDF ( 1441 ) Cited
Export

EndNote

Ris

BibTeX

Lignocellulosic biomass is an important renewable resource, and has potential application in high quality biofuels to substitute fossil energy and reduce green house gas emission. Among those high quality biofuels, oxygen-contained 2,5-dimethyl furan (DMF) and C5/C6 alkanes show particular interests because these two kinds fuels could be produced from biomass via 5-hydroxymethyl furfural (HMF) intermediate. DMF is an ideal replacement and/or dopant for the presently used gasoline by enhancing combustion efficiency and reducing contaminant emission because of its higher energy density, higher octane number and higher boiling point. On the other hand, C5/C6 alkanes are the important gasoline components for adjusting the octane number and volatile properties. In this paper, combining our studies, we systematically summarize the status-of-the-art technologies for HMF synthesis from cellulose, and DMF and C5/C6 alkanes production by selective and complete hydrodeoxygenation of HMF respectively, depended on reaction medium, catalyst and pathway. The reaction mediums include water, ionic liquid, polar aprotic organic solvent and water contained biphasic solvent; and catalysts include inorganic acid, metal salt, solid acid and supported catalyst. Finally, the future of biomass derived DMF and C5/C6 alkanes production is remarked and prospected.

Contents
1 Introduction
2 HMF from cellulose
2.1 Mechanism
2.2 Reaction medium
2.3 Catalysic system
2.4 Side reaction
3 DMF from HMF through selective hydrogenolysis
3.1 Mechanism
3.2 Reaction medium
3.3 Catalysic system
4 C5/C6 alkanes from cellulose
4.1 Pathway of alkanes
4.2 Catalysic system
5 Conclusion and outlook

CLC Number: 

[1] 张华(Zhang H), 魏晓平(Wei X P).北京理工大学学报(Journal of Beijing Institute of Technology), 2014, 16:42.
[2] 王晓明(Wang X M), 唐兰(Tang L), 赵黛青(Zhao D Q), 郝海清(Hao H Q), 王欢(Wang H),王云鹤(Wang Y H), 朱赤晖(Zhu C H). 环境影响评价(Environmental Impact Assessment), 2010, 32:38.
[3] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107:2411.
[4] 胡磊(Hu L), 孙勇(Sun Y), 林鹿(Lin L). 化学进展(Progress in Chemistry), 2011, 23:2079.
[5] Climent M J, Corma A, Iborra S. Green Chem., 2014, 16:516.
[6] 王军(Wang J), 张春鹏(Zhang C P), 欧阳平凯(Ouyang P K). 化工进展(Chemical Industry and Engineering Progress), 2008, 27:702.
[7] Zhao H B, Holladay J E, Science, 2007, 316:1597.
[8] Binder J B, Cefali A V, Blank J J, Raines R T. Energy Environ. Sci., 2010, 3:765.
[9] Antal M J, Mok W S L, Richards G N. Carbohydr. Res., 1990, 199:91.
[10] Guan J, Cao Q A, Guo X C, Mu X D. Comput. Theor. Chem., 2011, 963:453.
[11] Amarasekara A S, Williams L D. Carbohyd Res., 2008, 343:3021.
[12] Asghari F S, Yoshida H. Carbohyd Res., 2006, 341:2379.
[13] Ohno H, Fukaya Y. Chem. Lett., 2009, 38:2.
[14] Li C Z, Zhang Z H, Zhao Z B K. Tetrahedron Lett., 2009, 50:5403.
[15] Ding Z D, Shi J C, Xiao J J, Gu W X, Zheng C G, Wang H J. Carbohyd Polym., 2012, 90:792.
[16] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131:1979.
[17] Chen T M, Lin L. Chinese. J. Chem., 2010, 28:1773.
[18] Yan H P, Yang Y, Tong D M, Xiang X, Hu C W. Catal. Commun., 2009, 10:1558.
[19] Bicker M, Hirth J, Vogel H. Green Chem., 2003, 5:280.
[20] Yamaguchi K, Sakurada T, Ogasawara Y, Mizuno N. Chem. Lett., 2011, 40:542.
[21] Hansen T S, Mielby J, Riisager A. Green Chem., 2011, 13:109.
[22] Yang F L, Liu Q S, Bai X F, Du Y G. Bioresource Technol., 2011, 102:3424.
[23] Nikolla E, Roman-Leshkov Y, Moliner M, Davis M E. ACS Catal., 2011, 1:408.
[24] Yang Y, Hu C W, Abu-Omar M M. Green Chem., 2012, 14:509.
[25] Shi N, Liu Q Y, Zhang Q, Wang T J, Ma L L. Green Chem., 2013, 15(7):1967.
[26] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147):982.
[27] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84:339.
[28] Xiang Q, Lee Y Y, Torget R W. Appl. Biochem. Biotechnol., 2004, 113:1127.
[29] Chheda J N, Roman-Leshkov Y, Dumesic J A. Green Chem., 2007, 9:342.
[30] Zhang Z H, Wang Q A, Xie H B, Liu W J, Zhao Z B. ChemSusChem., 2011, 4:131.
[31] Zheng B H, Fang Z J, Cheng J, Jiang Y H. Naturforsch., B:Chem. Sci., 2010, 65:168.
[32] Deng T S, Cui X J, Qi Y Q, Wang Y X, Hou X L, Zhu Y L. Chem. Commun., 2012, 48:5494.
[33] Moliner M, Roman-Leshkov Y, Davis M E. Natl. Acad. Sci. U.S.A., 2010, 107:6164.
[34] Yang F L, Liu Q S, Yue M, Bai X F, Du Y G. Chem. Commun., 2011, 47:4469.
[35] Zhao Q A, Wang L, Zhao S, Wang X H, Wang S T. Fuel, 2011, 90:2289.
[36] Qi X H, Watanabe M, Aida T M, Smith R L. ChemSusChem., 2010, 3:1071.
[37] Zhao S, Cheng M X, Li J Z, Tian J A, Wang X H. Chem Commun., 2011, 47:2176.
[38] Ehara K, Saka S. J. Wood Sci., 2005, 51:148.
[39] Asghari F S, Yoshida H. Carbohyd Res., 2010, 345:124.
[40] Tan M X, Zhao L, Zhang Y G. Biomass Bioenerg., 2011, 35:1367.
[41] Yu S, Brown H M, Huang X W, Zhou X D, Amonette J E, Zhang Z C. Appl. Catal. A, Gen., 2009, 361:117.
[42] Qi X H, Watanabe M, Aida T M, Smith R L. ChemSusChem., 2010, 3:1071.
[43] Wang P, Yu H B, Zhan S H, Wang S Q. Bioresource Technol., 2011, 102:4179.
[44] McNeff C V, Nowlan D T, McNeff L C, Yan B W, Fedie R L. Appl. Catal. A, Gen., 2010, 384:65.
[45] Horvat J, Klaic B, Metelko B, Sunjic V. Tetrahedron Lett.,1985, 26:2111.
[46] Dee S J, Bell A T. ChemSusChem., 2011, 4:1166.
[47] Patil S K R, Lund C R F. Energ. Fuel, 2011, 25:4745.
[48] Sumerskii I V, Krutov S M, Zarubin M Y. Russ. J. Appl. Chem., 2010, 83:320.
[49] Hu L, Lin L, Liu S J. Ind Eng Chem Res., 2014, 53:9969.
[50] Tamura M, Tokonami K, Nakagawa Y, Tomishige K. Chem Commun., 2013, 49:7034.
[51] Chidambaram M, Bell A T. Green Chem., 2010, 12:1253.
[52] Thananatthanachon T, Rauchfuss T B. Agnew. Chem. Int. Ed., 2010, 49(37):6616.
[53] Jae J, Zheng W Q, Lobo R F, Vlachos D G. ChemSusChem., 2013, 6:1158.
[54] Wang J J, Liu X H, Hu B C, Lu G Z, Wang Y Q. RSC Adv., 2014, 4:31101.
[55] Zu Y H, Yang P P, Wang J J, Liu X H,Ren J W, Lu G Z,Wang Y Q. Appl. Catal. B, Environ., 2014, 146:244.
[56] Huang Y B, Chen M Y, Yan L, Guo Q X, Fu Y. ChemSusChem., 2014, 7:1068.
[57] Kong X, Zhu Y F, Zheng H Y, Dong F, Zhu Y L, Li Y W. RSC Adv., 2014, 4:60467.
[58] Zhang J H, Lin L, Liu S J. Energ. Fuel, 2012, 26:4560.
[59] Saha B, Bohn C M, Abu-Omar M M. ChemSusChem., 2014, 7:3095.
[60] Yang P P, Cui Q Q, Zu Y H, Liu X H, Lu G Z, Wang Y Q. Catal. Commun., 2015, 66:55.
[61] Huber G W, Dumesic J A. Catal. Today, 2006, 111:119.
[62] Li N, Huber G W. J. Catal., 2010, 270:48.
[63] Zhang Q, Wang T J, Li B, Jiang T, Ma L L, Zhang X H, Liu Q Y. Appl. Energ., 2012, 97:509.
[64] Zhang Q, Qiu K, Li B, Jiang T, Zhang X H, Ma L L, Wang T J. Fuel, 2011, 90:3468.
[65] de Beeck B O, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels B F. Energy Environ. Sci., 2015, 8:230.
[66] Huber G W, Cortright R D, Dumesic J A. Angew. Chem. Int. Ed., 2004, 43:1549.
[67] West R M, Tucker M H, Braden D J, Dumesic J A. Catal. Commun., 2009, 10:1743.
[68] Davda R R, Shabaker J W, Huber G W, Cortright R D, Dumesic J A. Appl. Catal. B, Environ., 2005, 56:171.
[69] Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Science, 2008, 322:417.
[70] Liu S B, Tamura M, Nakagawa Y, Tomishige K. ACS Sustain. Chem. Eng., 2014, 2:1819.
[71] Liu Y, Chen L G, Wang T J, Zhang X H, Long J X, Zhang Q, Ma L L. Rsc Adv., 2015, 5:11649.
[72] Dutta S, Pal S. Biomass Bioenerg., 2014, 62:182.
[73] Anet E F L J. Adv. Carbohyd. Chem., 1964, 19:181.
[74] Li C Z, Zhao Z B K, Cai H L, Wang A Q, Zhang T. Biomass Bioenerg., 2011, 35:2013.
[75] Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem Commun., 2009, 41:6276.
[76] Ohara M, Takagaki A, Nishimura S, Ebitani K. Appl. Catal. A, Gen., 2010, 383:149.
[77] Li C Z, Cai H L, Zhang B, Li W Z, Pei G X, Dai T, Wang A Q, Zhang T. Chin. J. Catal., 2015, 36:1638.
[78] Shi N, Liu Q Y, Wang T J, Zhang Q, Tu J L, Ma L L. Chin. J. Chem. Phys., 2014, 27:711.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[15] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.