中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 121-130 DOI: 10.7536/PC150745 Previous Articles   Next Articles

• Review and comments •

Preparation, Properties and Applications of Hydrochar

Wu Yanjiao, Li Wei, Wu Qiong, Liu Shouxin*   

  1. Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Special Fund for Forest Scientific Research in the Public Welfare (No. 201504605), the National Natural Science Foundation of China (No. 31570567, 31500467),the Fundamental Research Funds for the Central Universities(No. 2572014EB01), and the Zhejiang Key Level 1 Discipline of Forestry Engineering (No. 2014lygcz017).
PDF ( 4662 ) Cited
Export

EndNote

Ris

BibTeX

Hydrochar is a black carbonaceous solid which is derived from biomass via hydrothermal carbonization condition: using water as solvent and reaction medium, at the temperature of 150~375 ℃ and autogenously pressure. Rich oxygen-containing functional groups, together with high heat value (HHV) are the distinguished properties of hydrochar. Their properties are influenced by raw materials type, hydrothermal carbonization temperature and time. It has revealed a promising perspective in absorbent, preparation of porous carbon, catalyst carrier and clean energy. In this study, the production, properties and formation mechanism of hydrochar are summarized. Meanwhile, the applications of hydrochar are reviewed and the future development is prospected.

Contents
1 Introduction
2 Production of hydrochar
2.1 Influence of feedstock
2.2 Influence of hydrothermal temperature
3 Properties of hydrochar
3.1 Surface chemical properties
3.2 High heat value
3.3 Microcrystalline structure
3.4 Morphological characterization
4 Formation mechanism of hydrochar
5 Applications of hydrochar
5.1 Adsorption of heavy metal ion
5.2 Preparation of porous carbon
5.3 Solid acid catalyst
5.4 Clean energy
6 Conclusion

CLC Number: 

[1] Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J. Bioresour. Technol., 2011, 102: 9255.
[2] Hoekman S K, Broch A, Robbins C, Zielinska B, Felix L. Biomass Conversion and Biorefinery, 2013, 3: 113.
[3] Wu C H, Chang C Y, Lin J P, Hwang J Y. Fuel, 1997, 76: 1151.
[4] Bini R, Ceppatelli M, Citroni M, Schettino V. Chem. Phys., 2012, 398: 262.
[5] Benavente V, Calabuig E, Fullana A. J. Anal. Appl. Pyrolysis, 2015, 113: 89.
[6] Yan W, Hastings J T, Acharjee T C, Coronella C J, Vásquez V R. Energy Fuels, 2010, 24: 4738.
[7] Kambo H S, Dutta A. Energ. Convers. Manage., 2015, 105: 746.
[8] Pala M, Kantarli I C, Buyukisik H B, Yanik J. Bioresour. Technol., 2014, 161: 255.
[9] Liu Z, Balasubramanian R. Appl.Energ., 2014, 114: 857.
[10] Lynam J G, Coronella C J, Yan W, Reza M T, Vasquez V R. Bioresour. Technol., 2011, 102: 6192.
[11] Lynam J G, Reza M T, Vasquez V R, Coronella C J. Fuel, 2012, 99: 271.
[12] Novianti S, Biddinika M K, Prawisudha P, Yoshikawa K. Procedia Environ. Sci., 2014, 20: 46.
[13] Sevilla M, Fuertes A B. Energ. Environ. Sci., 2011, 4(5): 1765.
[14] Steinbeiss S, Gleixner G, Antonietti M. Soil Biol. Biochem., 2009, 41(6): 1301.
[15] Li Y, Liu X. Mater. Chem. Phys., 2014, 148(1): 380.
[16] Basso D, Weiss-Hortala E, Patuzzi F, Castello D, Baratieri M, Fiori L. Bioresour. Technol., 2015, 182: 217.
[17] Libra J A, Ro K S, Kammann C, Funke A, Berge N D, Neubauer Y. Biofuels, 2011, 2(1): 71.
[18] Kurse A, Dahmen N. J. Supercrit. Fluid., 2015, 96: 36.
[19] Zhang L, Xu C C, Champagne P. Energy Convers. Manage., 2010, 51(5): 969.
[20] He M, Hu Z, Xiao B, Li J, Guo X, Luo S, Yang F, Feng Y, Yang G J, Liu S M. Int. J. Hydrogen Energy, 2009, 34(1): 195.
[21] Buah W K, Cunliffe A M, Williams P T. Process Saf. Environ. Prot., 2007, 85(5): 450.
[22] Ryu C, Sharifi V N, Swithenbank J. Int. J. Energ. Res., 2007, 31(2): 177.
[23] Berge N D, Ro K S, Mao J, Flora J R, Chappell M A, Bae S. Environ. Sci. Technol., 2011, 45(13): 5696.
[24] Phan A N, Ryu C, Sharifi V N, Swithenbank J. J. Anal. Appl. Pyrolysis, 2008, 81(1): 65.
[25] Xiao G, Jin B S, Zhong Z P, Chi Y, Ni M J, Cen K F, Xiao R, Huang Y J, Huang H. J. Environ. Sci., 2007, 19(11): 1398.
[26] Bosmans A, Helsen L. Third International Symposium on Energy from Biomass and Waste. Environmental Sanitary Engineering Centre, Venice, Italy, 2010. 227.
[27] Sevilla M, Maciá-Agulló J A, Fuertes A B. Biomass Bioenergy, 2011, 35(7): 3152.
[28] Bach Q V, Tran K Q, Skreiberg Q, Khalil R A, Phan A N. Fuel, 2014, 137: 375.
[29] Kang W, Li H, Yan Y, Xiao P, Zhu L, Tang K. J. Phys. Chem.C, 2011, 115(14): 6250.
[30] Lu X, Jordan B, Berge N D. Waste Manage., 2012, 32(7): 1353.
[31] Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I. Bioresour. Technol., 2011, 102(5): 4157.
[32] Akaln M K, Tekin K, Karagöz S. Bioresour. Technol., 2012, 110: 682.
[33] Jamari S S, Howse J R. Biomass Bioenergy, 2012, 47: 82.
[34] Biller P, Friedman C, Ross A B. Bioresour. Technol., 2013, 136(3):188.
[35] Takata E, Tsutsumi K, Tsutsumi Y, Tabata K. Bioresour. Technol., 2013, 143(6):53.
[36] Tekin K, Karagöz S, Bekta? S. Renew. Sust. Energ. Rev., 2014, 40: 673.
[37] Liu C, Sun R. Cereal Straw As A Resource for Sustainable Biomaterials Biofuels.1st ed. 2010.131.
[38] Hodgson E M, Nowakowski D J, Shield I, Riche A, Bridgwater A V, Clifton-Brown J C. Bioresour. Technol., 2011, 102(3): 3411.
[39] Sevilla M, Gu W, Falco C, Titirici M M, Fuertes A B, Yushin G. J. Power Sources, 2014, 267: 26.
[40] Zhang J, Lin Q, Zhao X. Journal of Integrative Agriculture, 2014, 13(3): 471.
[41] Kang S, Li X, Fan J, Jie C. Bioresour. Technol., 2012, 110: 715.
[42] Poerschmann J, Weiner B, Baskyr I. Chemosphere, 2013, 92(11): 1472.
[43] Hwang I H, Aoyama H, Matsuto T, Nakagishi T, Matsuo T. Waste Manage., 2012, 32(3): 410.
[44] Liu Z, Quek A, Hoekman S K, Balasubramanian R. Fuel, 2013, 103: 943.
[45] Kang S M, Xiang L, Juan F, Jie C. Ind. Eng. Chem. Res., 2012, 51: 9023.
[46] Parshetti G K, Hoekman S K, Balasubramanian R. Bioresour. Technol., 2013, 135: 683.
[47] Reza M T, Borrego A G, Wirth B. Int. J. Coal Geol., 2014, 134: 74.
[48] Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H. Energy, 2013, 58(9): 376.
[49] Reza M T, Rottler E, Herklotz L, Wirth B. Bioresour. Technol., 2015: 336.
[50] Wild T, Bergins C, Strauβ K. Chem. Ing. Tech., 2004, 76:1715.
[51] Funke A, Ziegler F. Biofuels, Bioprod. Bioref., 2010, 4(2): 160.
[52] Khan A A, De Jong W, Jansens P J, Spliethoff H. Fuel Process. Technol., 2009, 90(1): 21.
[53] Álvarez-Murillo A, Román S, Ledesma B, Sabio E. J. Anal. Appl. Pyrol., 2015, 113: 307.
[54] Kambo H S, Dutta A. Appl.Energ., 2014, 135: 182.
[55] Hoekman S K, Broch A, Robbins C. Energy Fuels, 2011, 25(4): 1802.
[56] Sevilla M, Fuertes A B. Carbon, 2009, 47(9): 2281.
[57] Liu Y, Fang Y, Lu X. Chem. Eng. J., 2013, 229:105.
[58] Hu J, Shen D, Wu S, Zhang H, Xiao R. J. Anal. Appl. Pyrolysis, 2014, 106: 118.
[59] Lu L, Kong C, Sahajwalla V, Harris D. Fuel, 2002, 81(9): 1215.
[60] Yin Y, Zhang J, Sheng C, Korean J. Chem. Eng., 2009, 26(3):895.
[61] Maeda R N, Serpa V I, Rocha V A L, Mesquita R A A, Anna L M M S, Castro A M D. Process Biochem., 2011, 46(5): 1196.
[62] Falco C, Marco-Lozar J P, Salinas-Torres D, Morallón E, Cazorla-Amorós D, Titirici M M. Carbon, 2013, 62: 346.
[63] Roman S, Nabais J M V, Ledesma B, González J F, Laginhas C, Titirici M M. Microporous Mesoporous Mat., 2013, 165: 127.
[64] Amonette J E, Joseph S. Biochar Environ. Manage.: Sci. Technol., 2009, 33.
[65] Fuertes A B, Arbestain M C, Sevilla M, Fiol S, Smernik R J, Aitkenhead W P. Soil Res., 2010, 48(7): 618.
[66] van Zandvoort I, Wang Y, Rasrendra C B, Van Eck E R, Bruijnincx P C, Heeres H J. ChemSusChem, 2013, 6(9): 1745.
[67] Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M M, Antonietti M. J. Phys. Chem.C, 2009, 113(22): 9644.
[68] van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vrise J G. Chem. Rev., 2013, 113(3): 1499.
[69] Lange J P, van der Heide E, van Buijtenen J, Price R. ChemSusChem, 2012, 5(1): 150.
[70] Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Biomass Bioenergy, 2010, 34(3): 290.
[71] Britt P F, Iii A C, Thomas K B, Lee S K. J. Anal. Appl. Pyrolysis, 1995, 33: 1.
[72] Hu J, Shen D, Xiao R, Wu S, Zhang H. Energy Fuels, 2012, 27(1): 285.
[73] Yong T L K, Matsumura Y. Ind. Eng. Chem. Res., 2013, 52(16): 5626.
[74] Falco C, Baccile N, Titirici M M. Green Chem., 2011, 13(11): 3273.
[75] Sevilla M, Titirici M. Boletín del Grupo Español del Carbón, 2012, 25: 7.
[76] Pyrzyńska K, Bystrzejewski M. Colloids and Surface A:Physicochemical and Engineering Aspects, 2010, 362: 102.
[77] Bhatnagar A, Hogland W, Marques M, Sillanpää M. Chem. Eng. J., 2013, 219: 499.
[78] Wu Q, Li W, Liu S. Mater. Res. Bull., 2014, 60: 516.
[79] Demir-Cakan R, Baccile N, Antonietti M, Titirici M M. Chem. Mater., 2009, 21(3): 484.
[80] Zhang Z, Cao X, Liang P, Liu Y H. J. Radioanal. Nucl. Chem., 2013, 295(2): 1201.
[81] Hao W, Björkman E, Lilliestrle M, Hedin N. Appl.Energ., 2013, 112: 526.
[82] Pari G, Darmawan S, Prihandoko B. Procedia Environ. Sci., 2014, 20: 342.
[83] Jain A, Balasubramanian R, Srinivasan M P. Micropor. Mesopor. Mat., 2015, 203: 178.
[84] Zhu X, Liu Y, Qian F, Chao Z, Zhang S, Chen J. Bioresour. Technol., 2014, 154: 209.
[85] Qi X, Li L, Wang Y, Liu N, Smith R L. Chem. Eng. J., 2014, 256: 407.
[86] Palomar J, Lemus J, Gilarranz M A, Rodriguez J J. Carbon, 2009, 47(7): 1846.
[87] Lemus J, Palomar J, Heras F, Gilarranz M A, Rodriguez J J. Sep. Purif. Methods, 2012, 97: 11.
[88] Martín-Jimeno F J, Suárez-García F, Paredes J I,Martínez-Alonso A, Tascón J. Carbon, 2015, 81: 137.
[89] Zheng M, Zhang H, Xiao Y, Dong H, Liu Y, Xu R. Mater. Lett., 2013, 109: 279.
[90] Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S. J. Mater. Chem., 2012, 22(43): 23186.
[91] Li Y, Li X M. RSC Advances, 2013, 3(7): 2398.
[92] Gao F, Shao G, Qu J, Lv S, Li Y, Wu M. Electrochim. Acta, 2015, 155: 201.
[93] Kalpana D, Omkumar K S, Kumar S S, Renganathan N G. Electrochim. Acta, 2006, 52(3): 1309.
[94] Zhang C, Wang H, Liu F, Wang L, He H. Cellulose, 2013, 20(1): 127.
[95] van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W. Energ. Environ. Sci., 2011, 4(9): 3601.
[96] Calucci L, Rasse D P, Forte C. Energy Fuels, 2012, 27(1): 303.
[97] Qi X, Lian Y, Yan L, Smith R L. Catal. Commun., 2014, 57: 50.
[98] Shuai L, Pan X. Energ. Environ. Sci., 2012, 5(5): 6889.
[99] Yan L, Liu N, Wang Y, Machida H, Qi X. Bioresour. Technol., 2014, 173: 462.
[100] Reza M T, Uddin M H, Lynam J G, Coronella C J. Biomass Bioenergy, 2014, 63: 229.
[101] Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S. Appl. Biochem. Biotechnol., 2010, 160(2): 539.
[102] Tremel A, Stemann J, Herrmann M, Erlach B, Spliethoff H. Fuel, 2012, 102: 396.
[103] Schimmelpfennig S, Müller C,Grünhage L, Koch C, Kammann C. Agric. Ecosyst. Environ., 2014, 191: 39.
[104] Busch D, Stark A, Kammann C I, Glaser B. Ecotox. Environ. Safe., 2013, 97(5): 59.
[105] Fang J, Gao B, Chen J, Zimmerman A R. Chem. Eng. J.,2015, 267: 253.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[7] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[8] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[9] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[10] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[11] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[12] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[13] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.