中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 83-90 DOI: 10.7536/PC150742 Previous Articles   Next Articles

• Review and comments •

Ion Imprinting Technology for Heavy Metal Ions

Fu Junqing1,2, Wang Xiaoyan2,3, Li Jinhua2, Chen Lingxin1,2*   

  1. 1. Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
    2. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai 26400;
    3. School of Pharmacy, Binzhou Medical University, Yantai 264003, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21275158, 21477160).
PDF ( 2151 ) Cited
Export

EndNote

Ris

BibTeX

Molecular imprinting technology(MIT) is known as a technology for creation of tailor-made binding sites with memory of the shape, size and functional groups of the template molecules. Ion imprinting technology is the technology that creating three-dimensional cavity structures in a polymer matrix, i.e., ion imprinting polymers (IIPs) by the copolymerization of functional monomers and cross-linkers in the presence of target ion that act as template molecules based on coordination or electrostatic interactions. After removal of the template ion with acidic reagent, recognition cavities complementary to the template ion were formed in the highly cross-linked polymer matrix. Owing to the special coordination, ion imprinting technology, as an important branch of MIT, obtained the rapid development. Heavy metal ion as the most typical water-soluble ion, has gained increasing concerns. So, effective identification and quantification of heavy metal ions by using ion imprinting polymers are highly crucial. The principles, synthesis strategies of ion imprinting and advantages on analysis of trace and ultra-trace metal are introduced in the review.Then, the applications of ion imprinted polymers for typical heave metal ions from environmental monitoring including lead, mercury, copper, cadmium, chromium and arsenic ions are summarized. Finally, the challenges and possible solution strategies, and future trends are proposed.

Contents
1 Introduction
2 Ion imprinting technology
2.1 Principles of ion imprinting
2.2 Preparation of ion imprinting
2.3 Superiority
3 Typical heave metal ion imprinted polymers and their applications
3.1 Pb-IIPs
3.2 Hg-IIPs and CH3Hg-IIPs
3.3 Cu-IIPs
3.4 Cd-IIPs
3.5 Cr-IIPs
3.6 As-IIPs
4 Conclusion and outlook

CLC Number: 

[1] 张慧(Zhang H), 何华(He H), 李洁(Li J), 李卉(Li H), 姚玉阳(Yao Y Y).化学进展(Progress in Chemistry), 2011, 23(10): 2140.
[2] Nishide H, Tsuchida E. Makromol. Chem., 1976, 177: 2295.
[3] Wulff G. Angew. Chem. Int. Ed., 1995, 34: 1812.
[4] Andersson L, Sellergren B, Mosbach K. Tetrahedron Lett., 1984, 25: 5211.
[5] Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N. J. Am. Chem. Soc., 1995, 117: 7105.
[6] Chen L X, Xu S F, Li J H. Chem. Soc. Rev., 2011, 40: 2922.
[7] 朱琳琰(Zhu L Y), 张荣华(Zhang R H), 朱志良(Zhu Z L). 化学通报(Chemistry), 2010, 73: 326.
[8] Gupta R, Kumar A. Biotechnol. Adv., 2008, 26: 533.
[9] 吕运开(Lv Y K), 严秀平(Yan X P).分析化学(Chinese Journal of Analytical Chemistry), 2005, 2(33): 254.
[10] Lofgreen J E, Ozin G A. Chem. Soc. Rev., 2014, 43: 911.
[11] Fu J Q, Chen L X, Li J H, Zhang Z. J. Mater. Chem. A, 2015, 3: 13598.
[12] Zhang Z, Xu S F, Li J H, Xiong H, Peng H L, Chen L X. J. Agric. Food. Chem., 2012, 60: 180.
[13] Ma Y, Zhang Y, Zhao M, Guo X Z, Zhang H Q. Chem. Commun., 2012, 48: 6217.
[14] 张栓红(Zhang S H), 孙昌梅(Sun C M), 曲荣君(Qu R J). 高分子通报(Polymer Bulletin), 2010, 4: 17.
[15] Dakova I, Yordanova T, Karadjova I. J. Hazard. Mater., 2012, 231: 49.
[16] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 807.
[17] Xu S F, Lu H Z, Li J H, Song X L, Wang A X, Chen L X, Han S B. ACS Appl. Mater. Interfaces, 2013, 5: 8146.
[18] Zhang W, He X W, Li W Y, Zhang Y K. Chem. Commun., 2012, 48: 1757.
[19] Zhang W, Liu W, Li P, Xiao H B, Wang H, Tang B. Angew. Chem. Int. Ed., 2014, 53: 12489.
[20] Tavengwa N T, Cukrowska E, Chimuka L. J. Hazard. Mater., 2014, 267: 221.
[21] Zhang Z, Li J H, Fu J Q, Chen L X. RSC Adv., 2014, 4: 20677.
[22] Cai X Q, Li J H, Zhang Z, Yang F F, Dong R C, Chen L X. ACS Appl. Mater. Interfaces, 2014, 6: 305.
[23] Bali P B, Jauhari D, Verma A. Talanta, 2014, 120: 398.
[24] Barciela-Alonso M C, Plata-García V, Rouco-López A, Moreda-Piñeiro A, Bermejo-Barrera P. Microchem. J., 2014, 114: 106.
[25] Xu S F, Lu H Z, Zheng X W, Chen L X. J. Mater. Chem.C, 2013, 1: 4406.
[26] 李金花(Li J H), 温莹莹(Wen Y Y), 陈令新(Chen L X). 色谱(Chinese Journal of Chromatography), 2013, 31: 181.
[27] 王玲玲(Wang L L), 闫永胜(Yan Y S), 邓月华(Deng Y H), 李春香(Li C X), 徐婉珍(Xu W Z). 分析化学(Chinese Journal of Analytical Chemistry), 2009, 4(37), 537.
[28] Li C X, Gao J, Pan J M, Zhang Z L, Yan Y S. J. Environ. Sci., 2009, 21: 1722.
[29] 杨潇(Yang X), 张朝晖(Zhang Z H), 张华斌(Zhang H B), 张明磊(Zhang M L), 胡宇芳(Hu Y F), 罗丽娟(Luo L J), 聂丽华(Nie L H). 分析化学(Chinese Journal of Analytical Chemistry), 2011, 39: 34.
[30] Aboufazeli F, Lotfi Zadeh Zhad H R, Sadeghi O, Karimi M, Najafi E. Food Chem., 2013, 141: 3459.
[31] Luo X, Liu L, Deng F, Luo S. J. Mater. Chem. A, 2013, 1: 8280.
[32] He J, Liu A, Chen J P. J. Colloid Interface Sci., 2015, 439: 162.
[33] Garcia-Otero N, Teijeiro-Valino C, Otero-Romani J, Pena-Vazquez E, Moreda-Pineiro A, Bermejo-Barrera P. Anal. Bioanal. Chem., 2009, 395: 1107.
[34] Tarley C R, Andrade F N, de Oliveira F M, Corazza M Z, de Azevedo L F, Segatelli M G. Anal. Chim. Acta, 2011, 703: 145.
[35] Alizadeh T, Ganjali M R, Zare M. Anal. Chim. Acta, 2011, 689: 52.
[36] Xu S F, Chen L X, Li J H, Guan Y F, Lu H Z. J. Hazard. Mater., 2012, 237/238: 347.
[37] Zhang Z, Li J H, Song X L, Ma J P, Chen L X. RSC Adv., 2014, 4: 46444.
[38] 付坤(Fu K), 高云玲(Gao Y L), 姚克俭(Yao K J). 分析测试学报(Journal of Instrumental Analysis), 2012, 31: 1001.
[39] Khajeh M, Sanchooli E. Environ. Chem. Lett., 2009, 9: 177.
[40] Khajeh M, Sanchooli E. Biol. Trace Elem. Res., 2010, 135: 325.
[41] Khajeh M, Sanchooli E. Int. J. Environ. Anal. Chem., 2011, 91: 1310.
[42] Dam H A, Kim D. Ind. Eng. Chem. Res., 2009, 48: 5679.
[43] Yilmaz V, Hazer O, Kartal S. Talanta, 2013, 116: 322.
[44] Hoai N T, Yoo D K, Kim D. J. Hazard. Mater., 2010, 173: 462.
[45] Dakova I, Karadjova I, Ivanov I, Georgieva V, Evtimova B, Georgiev G. Anal. Chim. Acta, 2007, 584: 196.
[46] Dakova I, Karadjova I, Georgieva V, Georgiev G. J. Sep. Sci., 2012, 35: 2805.
[47] Buica G O, Bucher C, Moutet J C, Royal G, Saint-Aman E, Ungureanu E M. Electroanalysis, 2009, 21: 77.
[48] Zhang N, Hu B. Anal. Chim. Acta, 2012, 723: 54.
[49] Candan N, Tüzmen N, Andac M, Andac C A, Say R, Denizli A. Mater. Sci. Eng., C, 2009, 29: 144.
[50] Chen A W, Zeng G M, Chen G Q, Hu X J, Yan M, Guan S, Shang C, Lu L H, Zou Z J, Xie G X. Chem. Eng. J., 2012, 191: 85.
[51] Tan J, Wang H F, Yan X P. Biosens. Bioelectron., 2009, 24: 3316.
[52] Prabhakaran D, Yuehong M, Nanjo H, Matsunaga H. Anal. Chem., 2007, 79: 4056.
[53] Tabakli B, Topcu A A, Doker S, Uzun L. Ind. Eng. Chem. Res., 2015, 54: 1816.
[54] Liu Y, Meng X G, Han J, Liu Z C, Meng M J, Wang Y, Chen R J, Tian S. J. Sep. Sci., 2013, 36: 3949.
[55] Tavengwa N T, Cukrowska E, Chimuka L. Talanta, 2013, 116: 670.
[56] Bayramoglu G, Arica M Y. J. Hazard. Mater., 2011, 187: 213.
[57] Le D?niewska B, Godlewska-?y?kiewicz B, Wilczewska A Z. Microchem. J., 2012, 105: 88.
[58] An F Q, Gao B. Desalination, 2009, 249: 1390.
[59] Liu B J, Wang D F, Li H Y, Xu Y, Zhang L. Desalination, 2011, 272: 286.
[60] Liu B J, Wang D F, Gao X, Zhang L, Xu Y, Li Y J. Eur. Food Res. Technol., 2011, 232: 911.
[61] Tsoi Y K, Ho Y M, Leung K S. Talanta, 2012, 89: 162.
[62] Fan H T, Fan X L, Li J, Guo M M, Zhang D S, Yan F, Sun T. Ind. Eng. Chem. Res., 2012, 51: 5216.
[63] 史瑞雪(Shi R X), 郭成海(Guo C H), 邹小红(Zou X H), 朱春野(Zhu C Y), 左言军(Zuo Y J), 邓云度(Deng Y D). 化学进展(Progress in Chemistry), 2002, 14(3): 182.
[1] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[2] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[3] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[4] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[5] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[6] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[7] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[8] Na Li, Ze Chang, Qiang Chen, Jiacheng Yin, Xian-He Bu. Construction and Modulation of Dynamic Coordination Space [J]. Progress in Chemistry, 2019, 31(1): 10-20.
[9] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[10] Bo Yan, Hongwei Zhou*, Pu Xie, Xilang Jin, Aijie Ma*, Weixing Chen. Dynamic and Reversible Intelligent Systems Regulated by Chemical Oscillating Reactions [J]. Progress in Chemistry, 2017, 29(7): 740-749.
[11] Mei Pan, Zhangwen Wei, Yaowei Xu, Cheng-Yong Su. Coordination Assembly of Metal-Organic Materials [J]. Progress in Chemistry, 2017, 29(1): 47-74.
[12] Jia Yingying, Li Yang, Zhou Ruisha, Song Jiangfeng. The Advance of Imidazoledicarboxylate Derivatives-Based Coordination Polymers [J]. Progress in Chemistry, 2016, 28(4): 482-496.
[13] Ma Xiaochuan, Fei Hao. The Use of Metal Coordination in Peptide and Protein Research [J]. Progress in Chemistry, 2016, 28(2/3): 184-192.
[14] Zhu Qianjiang, Xue Saifeng, Tao Zhu. Supramolecular Coordination Polymers Based on the Outer-Surface Interaction of Cucurbit [n] urils [J]. Progress in Chemistry, 2015, 27(6): 625-632.
[15] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.