中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 149-162 DOI: 10.7536/PC150719 Previous Articles   Next Articles

• Review and comments •

Protein Surface Imprinting Technology

Zhang Xianfeng1*, Du Xuezhong2   

  1. 1. Department of Applied Chemistry and Environmental Engineering, Bengbu College, Bengbu 233030, China;
    2. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273112, 21503004) and the Anhui Provincial Natural Science Foundation (No. 1508085QB32).
PDF ( 1398 ) Cited
Export

EndNote

Ris

BibTeX

Protein-imprinted materials have drawn great attention for their applications in bioseparation, biosensing and biomedical materials. Despite the success of small molecular imprinting technology in many areas, protein imprinting remains a challenge. This review gives an overview of the progress in protein surface imprinting technology. The preparation process, imprinting methods, and selective recognition ability of the different imprinting materials, including protein surface imprinting membranes, core-shell structured microspheres, nanowires, microgels, and monolayers, are detailed. The advantages and disadvantages of the protein surface imprinting methods are discussed, and the trends and possible future development direction are also elaborated.

Contents
1 Introduction
2 Materials for protein surface imprinting
2.1 Protein surface imprinting membranes
2.2 Protein surface imprinting core-shell structured microspheres
2.3 Protein surface imprinting nanowires
2.4 Protein surface imprinting microgels
2.5 Protein surface imprinting monolayers
3 Conclusion and outlook

CLC Number: 

[1] Wullff G, Sarhan A. Angew. Chem. Int. Ed., 1972, 11: 341.
[2] Vlatakis G, Andersson L I, Muller R, Mosbach K. Nature, 1993, 361: 645.
[3] Wulff G. Angew. Chem. Int. Ed. Engl., 1995, 34: 1812.
[4] Schillemans J P, Nostrum C F. Nanomedicine, 2006, 1: 437.
[5] Bossi A, Bonini F, Turner A P, Piletsky S A. Biosens. Bioelectron., 2007, 22: 1131.
[6] Yilmaz E, Haupt K, Mosbach K. Angew. Chem. Int. Ed., 2000, 39: 2115.
[7] 盖青青(Gai Q Q), 刘秋叶(Liu Q Y), 何锡文(He X W), 李文友(Li W Y), 陈朗星(Chen L X), 张玉奎(Zhang Y K). 化学进展(Progress in Chemistry), 2008, 20(6): 957.
[8] 闫长领(Yan C L), 卢雁(Lu Y). 化学进展(Progress in Chemistry), 2008, 20(6): 969.
[9] Mao X, Liang W A, Peng X H, Tang S Q. Recent Pat. Nanotech., 2010, 4: 85.
[10] Hansen D E. Biomaterials, 2007, 28: 4178.
[11] Janiak D S, Kofinas P. Anal. Bioanal. Chem., 2007, 389: 399.
[12] Turner N W, Jeans C W, Brain K R, Allender C J, Hlady V, Britt D W. Biotechnol. Prog., 2006, 22: 1474.
[13] Shi H, Tsai W B, Garrison M D, Ferrari S, Ratner B D. Nature, 1999, 398: 593.
[14] Shi H, Ratner B D. Biomed. Mater. Res., 2000, 49: 1.
[15] Kim E, Kim H C, Lee S G, Lee S J, Go T J, Baek C S, Jeong S W. Chem. Commun., 2011, 47: 11900.
[16] Li L, Yang L, Xing Z, Lu X, Kan X. Analyst, 2013, 138: 6962.
[17] Prasad B B, Prasad A, Tiwari M P. Biosens. Bioelectron., 2013, 39: 236.
[18] Wang X, Dong J, Ming H, Ai S. Analyst, 2013, 138: 1219.
[19] Karimian N, Vagin M, Zavar M H A, Chamsaz M, Turner A P F, Tiwari A. Biosens. Bioelectron., 2013, 50: 492.
[20] Komarova E, Aldissi M, Bogomolova A. Analyst, 2015, 140: 1099.
[21] Ramanaviciene A, Ramanavicius A. Biosens. Bioelectron., 2004, 20: 1076.
[22] Wu S, Tan W, Xu H. Analyst, 2010, 135: 2523.
[23] Sun S, Chen L, Shi H, Li Y, He X. J. Electroanal. Chem., 2014, 734: 18.
[24] Li Y, Hong M, Bin Q, Lin Z, Cai Z, Chen G. Biosens. Bioelectron., 2013, 42: 612.
[25] Moreira F T, Sharma S, Dutra R A, Noronha J P, Cass A E, Sales M G. Biosens. Bioelectron., 2013, 45: 237.
[26] Bognár J, Szücs J, Dorkó Z, Horváth V, Gyurcsányi R E. Adv. Funct. Mater., 2013, 23: 4703.
[27] Tai D F, Lin C Y, Wu T Z, Chen L K. Anal. Chem., 2005, 77: 5140.
[28] Rick J, Chou T C. Anal. Chim. Acta, 2005, 542: 26.
[29] Lee M H, Thomas J L, Tseng H Y, Lin W C, Liu B D, Lin H Y. ACS Appl. Mater. Interfaces, 2011, 3: 3064.
[30] Dechtrirat D, Gajovic-Eichelmann N, Bier F F, Scheller F W. Adv. Funct. Mater., 2014, 24: 2233.
[31] Wang Y, Zhang Q, Ren Y, Jing L, Wei T. Chem. Res. Chinese U., 2013, 30: 42.
[32] Chou P C, Rick J, Chou T C. Anal. Chim. Acta, 2005, 542: 20.
[33] Zayats M, Kanwar M, Ostermeier M, Searson P C. Macromolecules, 2011, 44: 3966.
[34] Fukazawa K, Li Q, Seeger S, Ishihara K. Biosens. Bioelectron., 2013, 40: 96.
[35] Wang S S, Ye J, Bie Z J, Liu Z. Chem. Sci., 2014, 5: 1135.
[36] Bi X, Liu Z. Anal. Chem., 2014, 86: 959.
[37] Bi X D, Liu Z. Anal. Chem., 2014, 86: 12382.
[38] Yin D, Ulbricht M. Biomacromolecules, 2013, 14: 4489.
[39] Yin D, Ulbricht M. J. Mater. Chem. B, 2013, 1: 3209.
[40] Lv Y, Tan T, Svec F. Biotechnol. Adv., 2013, 31: 1172.
[41] Luo J, Jiang S S, Liu X Y. J. Phys. Chem. C, 2013, 117: 18448.
[42] Glad M, Norrlöw O, Sellergren B, Siegbahn N, Mosbach K. J. Chromatogr. A, 1985, 347: 11.
[43] Kempe M, Glad M, Mosbach K. J. Mol. Recognit., 1995, 8: 35.
[44] Chen H, Kong J, Yuan D, Fu G. Biosens. Bioelectron., 2014, 53: 5.
[45] Li S W, Yang K G, Liu J X, Jiang B, Zhang L H, Zhang Y K. Anal. Chem., 2015, 87: 4617.
[46] Tan C J, Tong Y W. Anal. Chem., 2007, 79: 299.
[47] Yan C L, Lu Y, Gao S Y. J. Polym. Sci. Pol. Chem., 2007, 45: 1911.
[48] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 807.
[49] Xia Z W, Lin Z A, Xiao Y, Wang L, Zheng J N, Yang H H, Chen G N. Biosens. Bioelectron., 2013, 47: 120.
[50] Lin Z A, Sun L X, Liu W, Xia Z W, Yang H H, Chen G N. J. Mater. Chem. B, 2014, 2: 637.
[51] Li L, He X, Chen L, Zhang Y. Chem. Asian J., 2009, 4: 286.
[52] Bie Z J, Chen Y, Ye J, Wang S S, Liu Zhen. Angew. Chem. Int. Ed., 2015, DOI: 10.1002anie.201503066.
[53] Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M. Analyst, 2013, 138: 651.
[54] Liu Y, Gu Y, Li M, Wei Y. New J. Chem., 2014, 38: 6064.
[55] Kartal F, Denizli A. J. Sep. Sci., 2014, 37: 2077.
[56] Gao R, Mu X, Zhang J, Tang Y. J. Mater. Chem. B, 2014, 2: 783.
[57] Cao J L, Zhang X H, He X W, Chen L X,Zhang Y K. Chem. Asian J., 2014, 9: 526.
[58] Hua Z, Zhou S, Zhao M. Biosens. Bioelectron., 2009, 25: 615.
[59] Lin Z, Yang F, He X, Zhao X, Zhang Y. J. Chromatogr. A, 2009, 1216: 8612.
[60] Zhang W, He X W, Chen Y, Li W Y, Zhang Y K. Biosens. Bioelectron., 2011, 26: 2553.
[61] Zhang W, He X W, Chen Y, Li W Y, Zhang Y K. Biosens. Bioelectron., 2012, 31: 84.
[62] Zhang W, He X W, Li W Y, Zhang Y K. Chem. Commun., 2012, 48: 1757.
[63] Li D Y, He X W, Chen Y, Li W Y, Zhang Y K. ACS Appl. Mater. Interfaces, 2013, 5: 12609.
[64] Yang Y Q, He X W, Wang Y Z, Li W Y, Zhang Y K. Biosens. Bioelectron., 2014, 54: 266.
[65] Tan L, Kang C, Xu S, Tang Y. Biosens. Bioelectron., 2013, 48: 216.
[66] Zhang Z, Li J H, Wang X Y, Shen D Z, Chen L X. ACS Appl. Mater. Interfaces, 2015, 7: 9118.
[67] Zhang W, Liu W, Li P, Xiao H B, Wang H, Tang B. Angew. Chem. Int. Ed., 2014, 53: 12489.
[68] Li X, Zhang B, Li W, Lei X, Fan X, Tian L, Zhang H, Zhang Q. Biosens. Bioelectron., 2014, 51: 261.
[69] Li N, Qi L, Shen Y, Qiao J, Chen Y. ACS Appl. Mater. Interfaces, 2014, 6: 17289.
[70] Shiomi T, Matsui M, Mizukami F, Sakaguchi K. Biomaterials, 2005, 26: 5564.
[71] Bonini F, Piletsky S, Turner A P, Speghini A, Bossi A. Biosens. Bioelectron., 2007, 22: 2322.
[72] Tan C J, Chua H G, Ker K H, Tong Y W. Anal. Chem., 2008, 80: 683.
[73] Kan X, Zhao Q, Shao D, Geng Z, Wang Z, Zhu J J. J. Phys. Chem. B, 2010, 114: 3999.
[74] Gao F X, Ma X T, He X W, Li W Y, Zhang Y K. Colloid. Surface A, 2013, 433: 191.
[75] Zhang W, Qin L, He X W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 4560.
[76] Liu J, Yang K, Deng Q, Li Q, Zhang L, Liang Z, Zhang Y. Chem. Commun., 2011, 47: 3969.
[77] Guo M J, Zhao Z, Fan Y G, Wang C H, Shi L Q, Xia J J, Long Y, Mi H F. Biomaterials, 2006, 27: 4381.
[78] Long Y, Xing X, Han R, Sun Y, Wang Y, Zhao Z, Mi H. Anal. Biochem., 2008, 380: 268.
[79] Fu G, He H, Chai Z, Chen H, Kong J, Wang Y, Jiang Y. Anal. Chem., 2011, 83: 1431.
[80] Gai Q Q, Qu F, Zhang T, Zhang Y K. J. Chromatogr. A, 2011, 1218: 3489.
[81] 李永(Li Y), 杨黄浩(Yang H H), 庄峙厦(Zhuang Z X),王小如(Wang X R). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005, 26(9): 1634.
[82] Li Y, Yang H H, You Q H, Zhuang Z X, Wang X R. Anal. Chem., 2006, 78: 317.
[83] Ouyang R, Lei J, Ju H. Chem. Commun., 2008: 5761.
[84] Li Y X, Bin Q, Lin Z Y, Chen Y T, Yang H H, Chem. Commun., 2015, 51: 202.
[85] Pang X, Cheng G, Li R, Lu S, Zhang Y. Anal. Chim. Acta, 2005, 550: 13.
[86] Xia Y Q, Guo T Y, Song M D, Zhang B H, Zhang B L. Biomacromolecules, 2005, 6: 2601.
[87] Zhao K, Wei J, Cheng G, Yang C, Chen L. J. Appl. Polym. Sci., 2009, 113: 1133.
[88] Tan C J, Tong Y W. Langmuir, 2007, 23: 2722.
[89] Tan C J, Wangrangsimakul S, Bai R, Tong Y W. Chem. Mater., 2008, 20: 118.
[90] Ying X, Zhang F, Zhang L, Cheng G. J. Appl. Polym. Sci., 2010, 115: 3516.
[91] Pack D W, Arnold F H. Chem. Phys. Lipids, 1997, 86: 135.
[92] Yim H, Kent M S, Sasaki D Y, Polizzotti B D, Kiick K L, Majewski J, Satija S. Phys. Rev. Lett., 2006, 96: 198101.
[93] Britt D W, Möbius D, Hlady V. Phys. Chem. Chem. Phys., 2000, 2: 4594.
[94] Du X, Hlady V, Britt D. Biosens. Bioelectron., 2005, 20: 2053.
[95] Dhruv H, Pepalla R, Taveras M, Britt D W. Biotechnol. Prog., 2006, 22: 150.
[96] Turner N W, Wright B E, Hlady V, Britt D W. J. Colloid Interface Sci., 2007, 308: 71.
[97] Zheng H, Du X. J. Phys. Chem. B, 2009, 113: 11330.
[98] Zheng H, Du X. J. Phys. Chem. B, 2010, 114: 577.
[99] Zheng H, Du X. Biochim. Biophys. Acta, 2011, 1808: 2128.
[100] Zheng H, Du X. Biochim. Biophys. Acta, 2013, 1828: 792.
[101] Wang Y, Zhou Y, Sokolov J, Rigas B, Levon K, Rafailovich M. Biosens. Bioelectron., 2008, 24: 162.
[102] Zhang X, Du X, Huang X, Lv Z. J. Am. Chem. Soc., 2013, 135: 9248.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[13] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
Viewed
Full text


Abstract

Protein Surface Imprinting Technology