中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 961-974 DOI: 10.7536/PC150706 Previous Articles   

• Review and comments •

Double Perovskite Material as An Electrode for Intermediate-Temperature Solid Oxide Fuel Cells Application

Zhang Wenrui1, Zhang Zhihui1, Gao Liguo2*, Ma Tingli1,2*   

  1. 1. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan;
    2. School of Petroleum and Chemical Engineering, Dalian University of Technology-Panjin, Panjin 124221, China
  • Received: Revised: Online: Published:
PDF ( 1108 ) Cited
Export

EndNote

Ris

BibTeX

Solid oxide fuel cells (SOFCs) have attracted considerable attention because of their high energy conversion efficiency (reach up to 80%), low emission of pollutants, and excellent fuel flexibility. Conventional SOFCs need to be operated at high temperature typically at ~1000 ℃ to obtain the required performance. This high operating temperature leads to the degradation of fuel cell performance, interfacial reactions among the components, and limited choice of materials. Therefore, intermediate temperature solid oxide fuel cell (IT-SOFCs) would be a development trend for the next generation of SOFCs which could be commercialized in the future. Lowing the operating temperature from traditional 1000 ℃ to 500~800 ℃ or even lower not only significantly prolongs the lifetime of materials and reduces the SOFCs system costs, but also provides a broader range for material selection. Therefore, it is necessary to develop a new electrode material with high electrochemical activity in intermediate temperature range to improve electrochemical performance. As one of the mixed ionic-electronic conductors (MIECs), the reaction sites of double perovskite materials extend the active sites from the three phase boundary to the entire exposed surface, which affords low polarization resistance and high performance at intermediate operating temperature. Meanwhile, due to the high ability of transporting oxygen ions, the low thermal expansion coefficient, good catalytic activity and high tolerance to sulfur poisoning and strong resistance against carbon deposition, the double-perovskite oxide becomes a promising electrode material for the IT-SOFCs. This review focuses on the structure stability, electronic and ionic conductivity as well as catalytic activity of perovskite materials. The main concerns about current double perovskite based electrode materials are summarized and the main future research directions are proposed.

Contents
1 Introduction
2 Solid oxide fuel cells
2.1 Introduction of SOFCs
2.2 Principle of SOFCs
2.3 Advantages of SOFCs
2.4 Problems of SOFCs
3 Cathode of SOFCs
3.1 LnBaCo2O6 layered double perovskite
3.2 Other Co-base double perovskite
3.3 Co-free double perovskite
4 Anode of SOFCs
5 Symmetric solid oxide fuel cells
6 Conclusion and outlook

CLC Number: 

[1] Kreuer K. Fuel Cells. 1st ed. NY: Springer-Verlag, 2013.
[2] Steele B C H, Heinzel A. Nature, 2001, 414(6861): 345.
[3] Park S D, Vohs J M, Gorte R J. Nature, 2000, 404(6775):265.
[4] 池田 宏之助. 燃料電池のすべて.東京:日本実業出版社. 2001.
[5] Tollefson J. Nature News, 2010, 464(7293): 1262.
[6] Singhal S C. Solid State Ionics, 2000,135(1): 305.
[7] Choudhury A, Chandra H, Arora A. Renewable Sustainable Energy Rev., 2013, 20: 430.
[8] Laguna-Bercero M A. J. Power Sources, 2012, 203: 4.
[9] Demirdöven N, Deutch J. Science, 2004, 305(5686): 974.
[10] 邵宗平(Shao Z P). 化学进展(Progress in Chemistry), 2011, 23(02/03): 418.
[11] Shao Z P, Zhou W, Zhu Z H. Prog. Mater. Sci., 2012, 57(4): 804.
[12] Wachsman E D, Lee K T. Science, 2011, 334(6058): 935.
[13] Nielsen J, Hjelm J. Electrochim. Acta, 2014, 115: 31.
[14] Wang D, Xin H L, Hovden R, Wang H, Yu Y, Muller D A, Abruña H D. Nat. Mater., 2013, 12(1): 81.
[15] Service R F. Science, 2007, 315(5809): 172
[16] Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Prog. Mater. Sci., 2015, 72: 141.
[17] 王晶晶(Wang J J), 魏棣(Wei D),旭昀(Xu Y). 广州化工(Guangzhou Chemical Industry), 2014, 42(2): 21.
[18] Kim J, Jun A, Shin J, Kim G. J. Am. Ceram. Soc., 2014, 97(2): 651.
[19] Patakangas J, Ma Y, Jing Y, Lund P. J. Power Sources, 2014.263: 315.
[20] Ali S M, Rosli R E, Muchtar A, Sulong A B, Somalu M R, Majlan E H. Ceram. Int., 2015, 41(1): 1323.
[21] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334(6061): 1383.
[22] Zhao S, Gao L, Lan C, Pandey S, Hayase S, Ma T. RSC Adv., 2016, DOI: 10.1039/C6RA02297A.
[23] Lee W, Han J W, Chen Y, Cai Z, Yildiz B. J. Am. Chem. Soc., 2013, 135(21): 7909.
[24] Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. J. Mater. Chem., 2007, 17(24): 2500.
[25] Taskin A A, Lavrov A N, Ando Y. Appl. Phys. Lett., 2005, 86(9): 091910.
[26] Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Shao-Horn Y. Nat. Commun., 2013, 4: 2439.
[27] Zhou Q, He T, Ji Y. J. Power Sources, 2008, 185(2): 754.
[28] Choi S, Park S, Kim J, Lim T H, Shin J, Kim G. Electrochem. Commun., 2013, 34: 5.
[29] Ahmad S, Bakar M S A, Rahman H A, Muchtar A. Applied Mechanics and Materials, 2014, 695: 3.
[30] Zhong H T, Ai D S, Lin X P. Key. Eng. Mat., 2014, 602: 862.
[31] Kim J, Choi S, Park S, Kim C, Shin J, Kim G. Electrochim. Acta, 2013, 112: 712.
[32] Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong H, Choi Y, Kim G, Liu M. Sci. Rep., 2013, 3.
[33] Kim J, Jun A, Shin J, Kim G. J. Am. Ceram. Soc., 2014, 97(2): 651.
[34] Wang J, Meng F, Xia T, Shi Z, Lian J, Xu C, Grenier J C. Int. J. Hydrogen. Energ., 2014, 39(32): 18392.
[35] Jun A, Kim J, Shin J, Kim G. Int. J. Hydrogen. Energ., 2012, 37(23): 18381.
[36] Jun A, Lim T, Shin J, Kim G. Int. J. Hydrogen. Energ., 2014, 39(35): 20791.
[37] Wang B, Long G, Ji Y, Pang M, Meng X. J. Alloys. Compounds., 2014, 606: 92.
[38] Park S, Choi S, Shin J, Kim G. Electrochim. Acta, 2014, 125: 683.
[39] Jin F, Li L, He T. J. Power Sources, 2015, 273: 591.
[40] Kim C, Kim J, Shin J, Kim G. Int. J. Hydrogen. Energ., 2014, 39(35): 20812.
[41] Wei B, Lü Z, Jiang W, Zhu X, Su W. Electrochim. Acta, 2014, 134: 136.
[42] Yoo S, Choi S, Kim J, Shin J, Kim G. Electrochim. Acta., 2013, 100: 44.
[43] Yoo S, Jun A, Ju Y W, Odkhuu D, Hyodo J, Jeong H Y, Kim G. Angew. Chem. Int. Ed., 2014, 53(48): 13064.
[44] Richter J, Holtappels P, Graule T, Nakamura T, Gauckler L J. Monatsh. Chem., 2009, 140(9): 985.
[45] Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. J. Power Sources, 2009, 192(2): 291.
[46] Wang Y, Zhao X, Lü S, Meng X, Zhang Y, Yu B, Yang J H. Ceram. Int., 2014, 40(7): 11343.
[47] Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang J. Ceram Int., 2014, 40(9): 14919.
[48] Li F, Zeng R, Jiang L, Wei T, Lin X, Xu Y, Huang Y. Journal of Materiomics, 2015, 1(1): 60.
[49] Pang S L, Jiang X N, Li X N, Wang Q, Su Z Y. J. Power Sources, 2012, 204: 53.
[50] Kovalev L V, Yarmolich M V, Petrova M L, Ustarroz J, Terryn H A, Kalanda N A, Zheludkevich M. ACS App. Mater. Inter., 2014, 6(21): 19201.
[51] Yu X, Long W, Jin F, He T. Electrochim. Acta, 2014, 123: 426.
[52] Mao X, Yu T, Ma G. J. Alloys. Compounds., 2015, 637: 286.
[53] Mao X, Wang W, Ma G. Ceram. Int., 2015. 41(8), 10276.
[54] Sun C, Stimming U. J. Power Sources, 2007, 171(2): 247.
[55] 郑尧(Zheng Y),周嵬(Zhou W),冉然(Ran R),邵宗平(Shao Z P).化学进展(Progress in Chemistry), 2008, 20(02/03): 413.
[56] Prakash B S, Kumar S S, Aruna S T. Renewable Sustainable Energy Rev., 2014, 36: 149.
[57] Rahman I E, Raza M A, Rahman M A. Adv. Mater. Res., 2012, 445: 497.
[58] Cheng Z, Wang J H, Choi Y, Yang L, Lin M C, Liu M. Energ. Environ. Sci., 2011, 4(11):4380.
[59] Chueh W C, Hao Y, Jung W, Haile S M. Nat. Mater., 2012, 11(2): 155.
[60] Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Electrochem. Soc., 2006, 153(7): A1266.
[61] Huang Y H, Dass R I, Xing Z L, Goodenough J B. Science, 2006, 312(5771): 254.
[62] Jiang L, Liang G, Han J, Huang Y. J. Power Sources, 2014, 270: 441.
[63] Thangadurai V, Shukla A K, Gopalakrishnan J. Solid State Ionics, 1997, 104(3): 277.
[64] Xia T, Liu X D, Li Q, Meng J, Cao X Q. J. Alloys Compounds, 2006, 422(1): 264.
[65] Ji Y, Huang Y H, Ying J R, Goodenough J B. Electrochem. Commun., 2007, 9: 1881.
[66] Wang W, Su C, Wu Y, Ran R, Shao Z. Chem. Rev., 2013, 113(10): 8104.
[67] Huang Y H, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough J B. Chem. Mater., 2009, 21(11): 2319.
[68] Xie Z, Zhao H, Du Z, Chen T, Chen N. J. Phys. Chem. C, 2014, 118(33): 18853.
[69] 刘张波(Liu Z B), 刘倍倍(Liu B B), 夏长荣(Xia C R). 化学进展(Progress in Chemistry), 2013, 25(11): 1821.
[70] Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Kim G. Nat. Mater., 2015, 14(2), 205.
[71] Ruiz-Morales J C, Marrero-López D, Canales-Vázquez J, Irvine J T. RSC Adv., 2011, 1(8): 1403.
[72] Wei T, Zhang Q, Huang Y H, Goodenough J B. J. Mater. Chem., 2012. 22(1): 225.
[73] Ge B, Ai D S, Deng C S, Ma J T, Lin X P. Key. Eng. Mat., 2012, 512: 1584.
[74] Muñoz-García A B, Bugaris D E, Pavone M, Hodges J P, Huq A, Chen F, Carter E A.J. Am. Chem. Soc., 2012, 134(15): 6826.
[75] Tan W, Pan C, Yang S, Zhong Q. J. Power Sources, 2015, 277: 416.
[76] Huang Y H, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough J B. Chem. Mater., 2009, 21(11): 2319.
[77] Yang Z B, Yang Y R, Chen Y, Liu Y H, Zhu T L, Han M F, Chen F L. J. Power Sources, 2015, 297: 271.
[78] Escudero M J, Parada I G, Fuerte A, Daza L. J. Power Sources, 2013, 243: 654.
[79] Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Yan G. Catal. Commun., 2015, 67: 108.
[80] Zheng K, ?wierczek K, Zajac W, Klimkowicz A. Solid State Ionics, 2014, 257: 9.
[81] Wei T, Ji Y, Meng X, Zhang Y. Electrochem. Commun., 2008, 10(9): 1369.
[82] Ding H P, Xue X J. Electrochim Acta, 2010, 55(11): 3812.
[83] Zhao F, Wang S, Brinkman K, Chen F. J. Power Sources, 2010, 195(17): 5468.
[84] Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Solid State Ionics, 2015, 274: 17.
[85] Choi S, Shin J, Kim G. J. Power Sources, 2012, 201: 10.
[86] Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang J. Ceram. Int., 2014, 40(9): 14919.
[87] Kim J, Jun A, Shin J, Kim G. J. Am. Ceram. Soc., 2014, 97(2): 651.
[88] Martínez-Coronado R, Aguadero A, Alonso J, Fernández-Díaz M. Solid State Sci., 2013, 18: 64.
[89] Badwal S P S, Giddey S, Kulkarni A, Munnings C. Aust. Cer. Soc., 2014, 50: 23.
[90] Méndez-Vilas A. Materials and Processes for Energy: Communicating Current Research and Technological Developments. 1st ed. Extremadura: Formatex, 2013. 512.
[91] Garcia-Martinez J. Nanotechnology for the Energy Challenge. 1st ed. Great Britain: John Wiley & Sons, 2010.
[92] Nie Y, Li L, Wei Z. Chem. Soc. Rev., 2015, 44(8): 2168.
[93] Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Nat. Chem., 2011, 3(1): 79.
[94] Zhu K, Liu H, Zhu X, Liu Y, Yang W. Int. J. Hydrogen. Energ., 2015, 40(1): 501.
[95] López-Robledo M, Laguna Bercero M, Silva J, Orera V, Larrea A. Ceram. Int., 2015, 41(6): 7651.
[96] Gao Y, Chen D, Chen C, Shao Z, Ciucci F. J. Power Sources, 2015, 278: 623.
[1] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[2] Liu Zhangbo, Liu Beibei, Xia Changrong. Nano-Structured Anodes of Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2013, 25(11): 1821-1829.
[3] Shao Zongping. Cathode Materials for Solid Oxide Fuel Cells Towards Operating at Intermediate-to-Low Temperature Range [J]. Progress in Chemistry, 2011, 23(0203): 418-429.
[4] Zhang Lei, Xia Changrong. Low Temperature Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2011, 23(0203): 430-440.
[5] Lü Zhe, Wei Bo, Tian Yanting, Wang Zhihong, Su Wenhui. Key Materials and Micro-Stack Systems of Single Chamber Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2011, 23(0203): 449-462.
[6] Xin Xianshuang|Zhu Qingshan**. Analyses of Solid Oxide Fuel Cells ( SOFCs) Stability [J]. Progress in Chemistry, 2009, 21(01): 227-234.
[7] Liang Mingde1,2 Yu Bo2** Wen Mingfen2 Chen Jing2 Xu Jingming2 Zhai Yuchun1. The Fabrication Technique of YSZ Electrolyte Film [J]. Progress in Chemistry, 2008, 20(0708): 1222-1232.
[8] Wang Kang|Shao Zongping**. The Single Chamber Solid Oxide Fuel Cell [J]. Progress in Chemistry, 2007, 19(0203): 267-275.
[9] Jiang Liu. Direct-hydrocarbon Solid Oxide Fuel Cell [J]. Progress in Chemistry, 2006, 18(0708): 1026-1033.
[10] Wenqiang Zhang,Bo Yu*,Ping Zhang,Jing Chen,Jingming Xu. Progress on the Anode Materials for Solid Oxide Fuel Cells (SOFC) and Its Application for Hydrogen Production through High Temperature Steam Electrolysis [J]. Progress in Chemistry, 2006, 18(06): 832-840.
[11] Jiang Yi,LiWenzhao,Wang Shizhong. The Progress in Solid Oxide Fuel Cells [J]. Progress in Chemistry, 1997, 9(04): 385-.