中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 67-74 DOI: 10.7536/PC150643 Previous Articles   Next Articles

• Review and comments •

Regulation the Morphology of Micro-and Nanoparticles and the Effect on Drug/Gene Delivery System

Liu Yajie, Zhang Peng, Du Jianwei, Wang Youxiang*   

  1. Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21474087, 51273177).
PDF ( 453 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular assembly has greatly promoted the development of drug/gene delivery system, due to the suitable micrometer or nanometer size, controllable structure and excellent biocompatibility. Recent studies have found that the topological structure plays a critical role in the drug/gene delivery process, which attracts great interest of researchers. In this paper, the main factors that regulate the morphology of micro-and nanoparticles are discussed, which mainly include composition of the copolymer, condition of self-assembly, external stimuli and polymerization-induced self-assembly. Then the effect of morphology on drug/gene delivery, challenges and prospects in this area are also discussed at the end of this review.

Contents
1 Introduction
2 Main methods of morphology regulation
2.1 Effect of the copolymer composition
2.2 Effect of self-assembly condition
2.3 Effect of external stimuli
2.4 Polymerization-induced self-assembly
3 The effect of morphology of drug/gene delivery system on blood circulation time and cell uptake
4 Conclusion

CLC Number: 

[1] Langer R. Science, 1990, 249: 1527.
[2] Kircheis R, Wightman L, Wagner E. Advanced Drug Delivery Reviews, 2001, 53: 341.
[3] Jin Q, Cai T J, Wang Y, Wang H B, Ji J. ACS Macro Letters, 2014, 3: 679.
[4] Wang Y, Du J W, Wang Y X, Jin Q, Ji J. Chem. Commun., 2015, 51: 2999.
[5] Li W Y, Liu Y J, Du J W, Ren K F, Wang Y X. Nanoscale, 2015, 7: 8476.
[6] Wang Y, Li D, Wang H B, Chen Y J, Han H J, Jin Q, Ji J. Chem. Commun., 2014, 50: 9390.
[7] Cui C, Xue Y N, Wu M, Zhang Y, Yu P, Liu L, Zhuo R X, Huang S. Biomaterials, 2013, 34: 3858.
[8] Welsch S, Kolesnikova L, Krähling V, Riches J D, Becker S, Briggs J. PloS Pathogens, 2010, 6: 111.
[9] Philp D, Stoddart J F. Angew. Chem. Int. Ed., 1996, 35: 1154.
[10] Zhang L, Eisenberg A. Polymers for Advanced Technologies, 1998, 9: 677.
[11] Halperin A, Tirrell M, Lodge T. Tethered Chains in Polymer Microstructures. Berlin: Springer, 1992. 100.
[12] Zupancich J A, Bates F S, Hillmyer M A. Macromolecules, 2006, 39: 4286.
[13] Geng Y, Discher D E, Justynska J, Schlaad H. Angew. Chem., 2006, 118: 7740.
[14] Yoon K, Kang H C, Li L, Cho H, Park M K, Lee E, Bae Y H, Huh K M. Polymer Chemistry, 2015, 6: 531.
[15] Harada A, Kamachi M. Macromolecules, 1990, 23: 2821.
[16] Choi H S, Ooya T, Lee S C, Sasaki S, Kurisawa M, Uyama H, Yui N. Macromolecules, 2004, 37: 6705.
[17] Cheng C, Han X J, Dong Z Q, Liu Y, Li B J, Zhang S. Macromolecular Rapid Communications, 2011, 32: 1965.
[18] Fan M M, Zhang W Z, Cheng C, Liu Y, Li B J, Sun X, Zhang S. Particle & Particle Systems Characterization, 2014, 31: 994.
[19] Shi Z, Zhou Y, Yan D. Macromolecular Rapid Communications, 2008, 29: 412.
[20] Basu S, Vutukuri D R, Shyamroy S, Sandanaraj B S, Thayumanavan S. J. Am. Chem. Soc., 2004, 126: 9890.
[21] Cha J N, Birkedal H, Euliss L E, Bartl M H, Wong M S, Deming T J, Stucky G D. J. Am. Chem. Soc., 2003, 125: 8285.
[22] Liu T T, Tian W, Zhu Y Q, Bai Y, Yan H X, Du J Z. Polym. Chem., 2014, 5: 5077.
[23] Yang Z G, Yuan J J, Cheng S Y. European Polymer Journal, 2005, 41: 267.
[24] Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes V B, Frisbie C D. Advanced Materials, 2004, 16: 1881.
[25] Peng X H, Zhang L N. Langmuir, 2007, 23: 10493.
[26] Discher D E, Eisenberg A. Science, 2002, 297: 967.
[27] Discher B M, Won Y Y, Ege D S, Lee J C, Bates F S, Discher D E, Hammer D A. Science, 1999, 284: 1143.
[28] Pochan D J, Chen Z, Cui H, Hales K, Qi K, Wooley K L. Science, 2004, 306: 94.
[29] Jiang X, Qu W, Pan D, Ren Y, Williford J M, Cui H, Luijten E, Mao H Q. Advanced Materials, 2013, 25: 227.
[30] Hu X L, Hu J M, Tian J, Ge Z S, Zhang G Y, Luo K F, Liu S Y. J. Am. Chem. Soc., 2013, 135: 17617.
[31] Lynd N A, Hillmyer M A. Macromolecules, 2005, 38: 8803.
[32] Zhang L F, Yu K, Eisenberg A. Science, 1996, 272: 1777.
[33] Fairley N, Hoang B, Allen C. Biomacromolecules, 2008, 9: 2283.
[34] Minatti E, Viville P, Borsali R, Schappacher M, Deffieux A, Lazzaroni R. Macromolecules, 2003, 36: 4125.
[35] Shen J, Jiang M W, Li Y K, Guo C G, Qiu X Y, Wang C Q. Colloid and Polymer Science, 2012, 290: 1193.
[36] Liaw C Y, Henderson K J, Burghardt W R, Wang J, Shull K R. Macromolecules, 2014, 48: 173.
[37] Mortensen K, Brown W. Macromolecules, 1993, 26: 4128.
[38] Jia L, Lévy D, Durand D, Impéror-Clerc M, Cao A, Li M H. Soft Matter, 2011, 7: 7395.
[39] Xiao D, Jia H Z, Zhang J, Liu C W, Zhuo R X, Zhang X Z. Small, 2014, 10: 591.
[40] Huang Y, Tang Z H, Zhang X F, Yu H Y, Sun H, Pang X, Chen X S. Biomacromolecules, 2013, 14: 2023.
[41] Li W, Zhang P, Zheng K, Hu Q, Wang Y. J. Mater. Chem. B, 2013, 1: 6418.
[42] Li W Y, Wang Y X, Chen L N, Huang Z X, Hu Q L, Ji J. Chem. Commun., 2012, 48: 10126.
[43] Li W Y, Qu J L, Du J W, Ren K F, Wang Y X, Sun J Z, Hu Q L. Chem. Commun., 2014, 50: 9584.
[44] Wang Y, Luo Q J, Sun R, Zha G Y, Li X D, Shen Z Q, Zhu W P. J. Mater. Chem. B, 2014, 2: 7612.
[45] Kozlovskaya V, Higgins W, Chen J, Kharlampieva E. Chem. Commun., 2011, 29: 8352.
[46] Gebhardt K E, Ahn S, Venkatachalam G, Savin D A. Langmuir, 2007, 23: 2851.
[47] Cai C H, Zhang L S, Lin J P, Wang L Q. J. Phys. Chem. B, 2008, 112: 12666.
[48] Versluis F, Tomatsu I, Kehr S, Fregonese C, Tepper A W J W, Stuart M C A, Ravoo B J, Koning R I, Kros A. J. Am. Chem. Soc., 2009, 131: 13186.
[49] Wang Y X. Biomaterials, 2006, 27: 5292.
[50] Williford J M, Ren Y, Huang K, Pan D, Mao H Q. J. Mater. Chem. B, 2014, 2: 8106.
[51] Du J Z, Long H Y, Yuan Y Y, Song M M, Chen L, Bi H, Wang J. Chem. Commun., 2012, 48: 1257.
[52] Wan W M, Pan C Y. Macromolecules, 2010, 43: 2672.
[53] Wan W M, Sun X L, Pan C Y. Macromolecules, 2009, 42: 4950.
[54] Warren N J, Armes S P. J. Am. Chem. Soc., 2014, 136: 10174.
[55] Charleux B, Delaittre G, Rieger J, D'Agosto F. Macromolecules, 2012, 45: 6753.
[56] Su Y, Xiao X, Li S T, Dan M H, Wang X H, Zhang W Q. Polymer Chemistry, 2014, 5: 578.
[57] Karagoz B, Boyer C, Davis T P. Macromolecular Rapid Communications, 2014, 35: 417.
[58] Karagoz B, Esser L, Duong H T, Basuki J S, Boyer C, Davis T P. Polym. Chem., 2013, 2: 350.
[59] Ladmiral V, Semsarilar M, Canton I, Armes S P. J. Am. Chem. Soc., 2013, 135: 13574.
[60] Hsieh D S, Rhine W D, Langer R. Journal of Pharmaceutical Sciences, 1983, 72: 17.
[61] Savi D? R, Luo L, Eisenberg A, Maysinger D. Science, 2003, 300: 615.
[62] Chithrani B D, Ghazani A A, Chan W C. Nano Lett., 2006, 6: 662.
[63] Geng Y, Dalhaimer P, Cai S S, Tsai R, Tewari M, Minko T, Discher D E. Nature Nanotechnology, 2007, 2: 249.
[64] Zhang K, Fang H, Chen Z, Taylor J S A, Wooley K L. Bioconjugate Chemistry, 2008, 19: 1880.
[65] Zhang K, Rossin R, Hagooly A, Chen Z, Welch M J, Wooley K L. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46: 7578.
[66] Decuzzi P, Godin B, Tanaka T, Lee S Y, Chiappini C, Liu X, Ferrari M. Journal of Controlled Release, 2010, 141: 320.
[67] Meng H, Yang S, Li Z X, Xia T, Chen J, Ji Z X, Zhang H Y, Wang X, Lin S J, Huang C. ACS Nano, 2011, 5: 4434.
[68] Barua S, Yoo J W, Kolhar P, Wakankar A, Gokarn Y R, Mitragotri S. Proc. Natl. Acad. Scie.U.S.A., 2013, 110: 3270.
[69] Zhang K. Bioconjugate Chemistry, 2008, 19: 1880.
[70] Tao L, Hu W, Liu Y, Huang G, Sumer B D, Gao J. Experimental Biology & Medicine, 2011, 236: 20.
[71] Florez L, Herrmann C, Cramer J M, Hauser C P, Koynov K, Landfester K, Crespy D, Mailänder V. Small, 2012, 8: 2222.
[72] Merkel T J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 586.
[73] Yang K, Ma Y Q. Nature Nanotechnology, 2010, 5: 579.
[74] Doshi N, Zahr A S, Bhaskar S, Lahann J, Mitragotri S. Proc.Natl. Acad. Sci. U. S. A., 2009, 106: 21495.
[75] Hoek E M. Journal of Colloid & Interface Science, 2006, 298: 50.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[10] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[11] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[12] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[13] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[14] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[15] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.