中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 337-352 DOI: 10.7536/PC150641 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review and comments •

Electrochemical Sensors Based on Electrochemically Reduced Graphene Oxide

Rao Honghong1*, Xue Zhonghua2, Wang Xuemei2, Zhao Guohu1, Hou Huihui2, Wang Hui2   

  1. 1. School of Chemistry and Environmental Science, Lanzhou City University, Lanzhou 730070, China;
    2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21265009, 21265018).
PDF ( 3588 ) Cited
Export

EndNote

Ris

BibTeX

As an ideal electrode material with excellent physical and chemical properties, graphene has been widely concerned in electrocatalysis and electroanalytical applications. It may be limited by the great in the electrochemical application areas due to its irreversible agglomeration. However, it is well realized that graphene oxide can provide a new way to separate graphene sheets for the reason of its good hydrophilic characteristic and also that the preparation of graphene oxide usually is simple and easy. But the electron transmission capacity of the modified interface based on graphene oxide would be further decreased due to its oxygen-containing groups, which are not benefited for the eletrocatalysis and electrochemical sensors with high sensitivity. Additionally, oxygen-containing groups of graphene oxide can be reduced by using some reduction methods so as to restore a more perfect graphene structure with planar conjugated, which will further improve the conductivity and adjust the band gap of graphene oxide. Therefore the electro-catalytic properties of the resulting materials can be adapted by using such reduction methods. Electrochemical sensors based on electrochemical reduced graphene oxide (ERGO) have been widely applied in all kinds of electrcatalytic and electrochemical sensor research fields due to its unique characteristic and advantages. In this paper, the recent progress of electrochemical sensor based on ERGO materials are briefly reviewed, including the characteristics, preparation principle and methods, classification of such electrochemical sensing platform and, also its applications as electrochemical sensing in the field of environmental pollutants, the food and drug, DNA and biological analysis. In addition, the future development and application prospect of this kind of ERGO based electrochemical sensors were further discussed.

Contents
1 Introduction
2 Preparation of ERGO modified electrodes
2.1 Indirect electrochemically reduced method
2.2 Direct electrochemically reduced method
3 Classification of ERGO modified electrodes
3.1 Intrinsical ERGO modified electrodes
3.2 The composite modified electrodes based on inorganic nanoparticles and ERGO
3.3 The composite modified electrodes based on organic compounds and ERGO
3.4 The composite modified electrodes based on inorganic-organic and ERGO
4 Electrocatalytic and electrochemical applications of ERGO modified electrodes
4.1 Electrochemical analysis of small molecules
4.2 Electrochemical analysis of molecules containing aromatic structure
4.3 Electrochemical analysis of biological molecules (protein and DNA)
5 Conclusion and outlook

CLC Number: 

[1] Walcarius A. Electroanal., 2008, 20(7):711.
[2] 尉艳(Wei Y), 刘中刚(Liu Z G), 高超(Gao C), 王伦(Wang L), 刘锦淮(Liu J H), 黄行九(Huang X J). 化学进展(Progress in Chemistry), 2012, 24(4):616.
[3] Švancara I, Vyt?as K, Kalcher K, Walcarius A, Wang J. Electroanal., 2009, 21(1):7.
[4] Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3):183.
[5] Gan T, Hu S S. Microchim. Acta, 2011, 175(1/2):1.
[6] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103(37):7743.
[7] Gao H C, Duan H W. Biosens. Bioelectron., 2015, 65:404.
[8] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[9] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Nat. Nanotech., 2008, 3(4):206.
[10] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Science Bulletin), 2009, 18:2657.
[11] 王珂(Wang K). 湖南大学硕士论文(Master Dissertation of Hunan University), 2012.
[12] Guo S J, Sun S H. J. Am. Chem. Soc., 2012, 134:2492.
[13] 吴婕(Wu J). 化工进展(Chemical Industry & Engineering Progress), 2013, 06:1352.
[14] 杨旭宇(Yang X Y), 王贤保(Wang X B),李静(Li J), 杨佳(Yang J), 万丽(Wan L), 王敬超(Wang J C). 高等学校化学学报(Chemical Journal of Chinese University), 2012, 09:1902.
[15] Yang Y J, Li W K. Biosens. Bioelectron., 2014, 56:300.
[16] Li C, Yang Y, Zhang B, Chen G, Wang Z, Li G. Part. Part. Syst. Char., 2014, 31(2):201.
[17] Yola M L, Atar N, Ustundag Z, Solak A O. J. Electroanal. Chem., 2013, 698:9.
[18] Liu M L, Wang L P, Meng Y, Chen Q, Li H T, Zhang Y Y, Yao S Z. Electrochim. Acta, 2014, 116:504.
[19] Liu Z N, Ma X M, Zhang H C, Lu W J, Ma H Y, Hou S F. Electroanal., 2012, 24(5):1178.
[20] Veerapandian M, Seo Y T, Yun K, Lee M H. Biosens. Bioelectron., 2014, 58:200.
[21] Wan Y J, Tang L C, Gong L X, Yan D, Li Y B, Wu L B, Jiang J X, Lai G Q. Carbon, 2014, 69:467.
[22] Jiang J J, Du X Z. Nanoscale, 2014, 6(19):11303.
[23] Liu X, Xie L L, Li H L. J. Electroanal. Chem., 2012, 682:158.
[24] Wang C, Zou X C, Wang Q, Shi K Y, Tan J, Zhao X, Chai Y Q, Yuan R. Anal. Methods, 2014, 6(3):758.
[25] Wang C Q, Du J, Wang H W, Zou C E, Jiang F X, Yang P, Du Y K. Sensor. Actuat. B:Chem., 2014, 204:302.
[26] Li S S, Hu Y Y, Wang A J, Weng X, Chen J R, Feng J J. Sensor. Actuat. B:Chem., 2015, 208:468.
[27] Sun W N, Lu X F, Tong Y, Zhang Z, Lei J Y, Nie G D, Wang C. Int. J. Hydrogen. Energ., 2014, 39(17):9080.
[28] Chae I S, Lee J H, Hong J, Kang Y S, Kang S W. Chem. Eng. J., 2014, 251:343.
[29] Khan A, Khan A A P, Asiri A M, Rub M A, Rahman M M, Ghani S A. Microchim. Acta, 2014, 181(9-10):1049.
[30] Zhang K L. Appl. Surf. Sci., 2012, 258(19):7327.
[31] Arza C R, Ishida H, Maurer F H J. Macromolecules, 2014, 47(11):3685.
[32] Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C. J. Appl. Phys., 2014, 116(5):10.
[33] Hsu Y C, Chen G L, Lee R H. J. Polymer Res., 2014, 21(5):9.
[34] Manivel P, Dhakshnamoorthy M, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C. Rsc Advances, 2013, 3(34):14428.
[35] Qian Y, Lan Y F, Xu J P, Ye F C, Dai S Z. Appl. Surf. Sci., 2014, 314:991.
[36] Yang J T, Wu M J, Chen F, Fei Z D, Zhong M Q. J. Supercrit. Fluid., 2011, 56(2):201.
[37] Zuo P P, Feng H F, Xu Z Z, Zhang L F, Zhang Y L, Xia W, Zhang W Q. Chem. Cent. J., 2013, 7:11.
[38] Dai G P, Lu P, Liang Y, Lei Y T. J. Chin. Chem. Soc., 2013, 60(4):366.
[39] Dong Y L, Zhang H G, Rahman Z U, Su L, Chen X J, Hu J, Chen X G. Nanoscale, 2012, 4(13):3969.
[40] Jiang T S, Liu W P, Mao Y L, Zhang L, Cheng J L, Gong M, Zhao H B, Dai L M, Zhang S, Zhao Q. Chem. Eng. J., 2015, 259:603.
[41] Chunder A, Pal T, Khondaker S I, Zhai L. J. Phys. Chem. C, 2010, 114(35):15129.
[42] Jahan M, Liu Z L, Loh K P. Adv. Funct. Mater., 2013, 23(43):5363.
[43] Wang X, Wang Q X, Wang Q H, Gao F, Gao F, Yang Y Z, Guo H X. Acs Appl. Mater. Interfaces, 2014, 6(14):11573.
[44] Loh K P, Bao Q, Eda G, Chhowalla M. Nat. Chem., 2010, 2(12):1015.
[45] Boukhvalov D W, Katsnelson M I. J. Am. Chem. Soc., 2008, 130:10697.
[46] Jeong H K, Jin M H, So K P, Lim S C, Lee Y H. J. Phys. D:Appl. Phys, 2009, 42(6):065418-1.
[47] 曾兆华(Zeng Z H),杨建文(Yang J W),材料化学第2版(Materials Chemistry, 2nd ed). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 232.
[48] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, R. D.Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, Jr., R. S.Ruoff, Carbon, 2009, 47:68.
[49] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S.Ruoff, J. Mater. Chem., 2006, 16, 155.
[50] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F A, Dong S J. Chem. Eur. J., 2009, 15(25):6116.
[51] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7):1558.
[52] 黄海平(Huang H P), 朱俊杰(Zhu J J). 分析化学(Chinese Journal of Analytical Chemistry), 2011, 7:963.
[53] Voylov D N, Agapov A L, Sokolov A P, Shulga Y M, Arbuzov A A. Carbon, 2014, 69:563.
[54] Li S J, Qian C, Wang K, Hua B Y, Wang F B, Sheng Z H, Xia X H. Sensor. Actuat. B:Chem, 2012, 174:441.
[55] 肖鹏(Xiao P), 王大辉(Wang D H), 郎俊伟(Lang J W). 电化学(Journal of Electrochemistry), 2014, 6:553.
[56] Akhavan O, Ghaderi E. J. Phys. Chem. C, 2009, 113(47):20214.
[57] Choobtashani M, Akhavan O. Appl. Surf. Sci., 2013, 276:628.
[58] Mani V, Periasamy A P, Chen S M. Electrochem. Commun., 2012, 17:75.
[59] Yang S, Li G, Wang G, Zhao J, Qiao Z, Qu L. Sensor. Actuat. B:Chem., 2015, 206:126.
[60] Wang Z,Wu S, Zhang J, Chen P, Yang G, Zhou X, Zhang Q, Yan Q, Zhang H. Nanoscale Res. Lett., 2012, 7(1):1.
[61] Yang B B, Wang H W, Du J, Fu Y Z, Yang P, Du Y K. Colloids Surf. A, 2014, 456:146.
[62] Teradal N L, Narayan P S, Jaladappagari S. Anal. Methods, 2013, 5(24):7090.
[63] Yang L, Liu D, Huang J S, You T Y. Sensor. Actuat. B:Chem, 2014, 193:166.
[64] Xie G X, Forslund M, Pan J S. ACS Appl. Mater. Interfaces, 2014, 6(10):7444.
[65] Goh M S, Bonanni A, Ambrosi A, Sofer Z, Pumera M. Analyst, 2011, 136:4738.
[66] Haque A M J, Park H, Sung D, Jon S, Choi S Y, Kim K. Anal. Chem., 2012, 84:1871.
[67] Guo H L,Wang X F, Qian Q Y, Wang F B, Xia X H. ACS Nano, 2009, 3(9):2653.
[68] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanal., 2010, 22(10):1027.
[69] Peng X Y, Liu X X, Diamond D, Lau K T. Carbon, 2011, 49(11):3488.
[70] 吴玲(Wu L), 曹忠(Cao Z), 宋天铭(Song T M), 宋铖(Song C), 谢晶磊(Xie J L), 何婧琳(He J L), 肖忠良(Xiao Z L). 分析化学(Chinese Journal of Analytical Chemistry), 2014, 11:1656.
[71] Ping J F, Wang Y X, Ying Y B, Wu J. Anal. Chem., 2012, 84:3473.
[72] Du M, Yang T, Li X, Jiao K. Talanta, 2012, 88:439.
[73] Ye X S, Liang B, Fang L, Yang G, Hu Y C, Guo X S. Biosens. Bioelectron., 2013, 43:131.
[74] Wang H W, Ren F F, Wang C Q, Yang B B, Bin D, Zhang K, Du Y K. Rsc Advances, 2014, 4(51):26895.
[75] Li S J, Deng D H, Pang H, Liu L, Xing Y, Liu S R. J. Solid State Electrochem., 2012, 16(9):2883.
[76] Zhang Z P, Yan J, Jin H Z, Yin J G. Electrochim. Acta, 2014, 139:232.
[77] Chng E L K, Pumera M. Chem. Asian J., 2011, 6:2899.
[78] Dharuman V, Hahn J H, Jayakumar K, Teng W. Electrochim. Acta, 2013, 114:590.
[79] Zhang Z, Yin J. Electrochim. Acta, 2014, 119:32.
[80] Dogan H O, Ekinci D, Demir U. Surf. Sci., 2013, 611:54.
[81] Aneesh P K, Nambiar S R, Rao T P, Ajayaghosh A. Anal. Methods, 2014, 6(14):5322.
[82] Devadas B, Rajkumar M, Chen S M, Saraswathi R. Int. J. Electrochem. Sci., 2012(7):3339.
[83] Deng P H, Xu Z F, Kuang Y F. J. Electroanal. Chem., 2013, 707:7.
[84] Casero E, Alonso C, Vazquez L, Petit-Dominguez M D, Parra-Alfambra A M, De La Fuente M, Merino P, Alvarez-Garcia S, De Andres A, Pariente F, Lorenzo E. Electroanal., 2013, 25(1):154.
[85] Zhao B, Liu Z R, Fu W Y, Yang H B. Electrochem. Commun., 2013, 27:1.
[86] Wang Z, Zhou X, Zhang J, Boey F, Zhang H J. Phys. Chem. C, 2009, 113(32):14071.
[87] Zhang Y, Xiao X, Sun Y, Shi Y, Dai H, Ni P, Hu J, Li Z, Song Y, Wang L. Electroanal., 2013, 25(4):959.
[88] Deng S Y, Lei J P, Cheng L X, Zhang Y Y, Ju H X. Biosens. Bioelectron., 2011, 26(11):4552.
[89] Raj M A, John S A. J. Phys. Chem. C, 2013, 117(8):4326.
[90] Hossain M F, Park J Y. Rsc Advances, 2013, 3(36):16109.
[91] Zhang Y, Xiao X P, Sun Y J, Shi Y, Dai H C, Ni P J, Hu J T, Li Z, Song Y H, Wang Li. Electroanalysis, 2013, 25:1.
[92] Sun W, Gong S X, Deng Y, Li T T, Cheng Y, Wang W C, Wang L. Thin Solid Films, 2014, 562:653.
[93] Wang W T, Xu G Y, Cui X T, Sheng G, Luo X L. Biosens. Bioelectron., 2014, 58:153.
[94] Shamsipur M, Tabrizi M A, Mahkam M, Aboudi J. Electroanal., 2015, 27(6):1466.
[95] Liu Q, Li Y, Zhang L, Li D, Fan C, Long Y T. Electroanal., 2010, 22(23):2862.
[96] Wu S, Huang F F, Lan X Q, Wang X Y, Wang J M, Meng C G. Sensor. Actuat. B:Chem., 2013, 177:724.
[97] You J M, Kim D, Kim S K, Kim M S, Han H S, Jeon S. Sensor Actuat. B:Chem., 2013, 178:450.
[98] Huang D K, Lu J F, Li S H, Luo Y P, Zhao C, Hu B, Wang M K, Shen Y. Langmuir, 2014, 30:6990.
[99] Li M, Bo X J, Mu Z C, Zhang Y F, Guo L P. Sensor Actuat. B:Chem., 2014, 192:261.
[100] Liu C, Wang K, Luo S, Tang Y, Chen L. Small, 2011, 7(9):1203.
[101] Olejnik P, Swietlikowska A, Gniadek M, Palys B. J. Phys. Chem. C, 2014, 118(51):29731.
[102] Si Y, Samulski E T. Nano Lett., 2008, 8(6):1679.
[103] Chen L, Tang Y, Wang K, Liu C, Luo S. Electrochem. Commun., 2011, 13(2):133.
[104] Xue Z H, Hou H H, Rao H H, Hu C X, Zhou X B, Liu X H, Lu X Q. RSC Advances, 2015, 5(46):36707.
[105] Adhikari B R, Govindhan M, Chen A. Electrochim. Acta, 2015, 162:198.
[106] Hu X, Dou W, Fu L, Zhao G. Anal. Biochem., 2013, 434(2):218.
[107] Wang D, Yan W, Vijapur S H, Botte G G. Electrochim. Acta, 2013, 89:732.
[108] Zhang H T, Zhang X, Zhang D C, Sun X Z, Lin H, Wang C H, Ma Y W. J. Phys. Chem. B, 2013, 117:1616.
[109] Guo S X, Liu Y P, Bond A M, Zhang J, Karthik P E, Maheshwaran I, Kumarb S S, Phani K L N. Phys. Chem. Chem. Phys., 2014, 16:19035.
[110] Dong X Y, Qiu B J, Yang X W, Jiang D, Wang K. Electrochem., 2014, 82(12):1061.
[111] Felix F S, Ferreira L M C, Vieira F, Trindade G M, Ferreira V, Angnes L. New J. Chem., 2015, 39(1):696.
[112] Liu G, Wang Y M, Sun D M. J. Mater. Sci. Mater. E, 2015, 26(2):943.
[113] Li J H, Wang Y, Li Y M, Tang L H, Lu J. Electrochem. Commun., 2009, 11:889.
[114] Zhang L, Zhang X H, Li X L, Peng Y, Shen H J, Zhang Y D. Anal. Lett., 2013, 46(6):923.
[115] 于小雯(Yu X W), 盛凯旋(Sheng K X), 陈骥(Chen J), 李春(Li C), 石高全(Shi G Q). 化学学报(Acta Chim. Sinica), 2014, 72:319.
[116] Artiles M S, Rout C S, Fisher T S. Adv. Drug Delivery Rev, 2011, 63:1352.
[117] Molina J, Fernandez J, Del Rio A I, Bonastre J, Cases F. Mater. Charact., 2014, 89:56.
[118] You J M, Han H S, Jeon S. J. Nanosci. Nanotechnol., 2015, 15(8):5691.
[119] Gholivand M B, Jalalvand A R, Goicoechea H C. Mater. Sci. Eng. C-Mater. Bio. Appl., 2014, 40:109.
[120] Li Z J, Sun X L, Xia Q F, Li R Y, Fang Y J, Yang S P, Liu J K. Electrochim. Acta, 2012, 85:42.
[121] Eng A Y S, Pumera M. Electrochem. Commun., 2014, 43:87.
[122] Zhu Q, Chai Y Q, Zhuo Y, Yuan R. Biosens. Bioelectron., 2015, 68:42.
[123] Liu Y, Huang Z, Xie Q J, Sun L E, Gu T A, Li Z, Bu L J, Yao S Z, Tu X M, Luo X B, Luo S L. Sensor. Actuat. B:Chem., 2013, 188:894.
[124] Ding L, Liu Y P, Zhai J P, Bond A M, Zhang J. Electroanal., 2014, 26(1):121.
[125] Nagaraju D H, Suresh G S. ECS Electrochem. Lett., 2012, 1(3):F21.
[126] Zhang X F, Zhang B Y, Huang D K, Yuan H L, Wang M K, Shen Y. Carbon, 2014, 80:591.
[127] Yang J C, Zhang W. J. Solid State Electrochem., 2014, 18(10):2863.
[128] Yang T, Chen M J, Kong Q Q, Wang X X, Guo X H, Li W H, Jiao K. Electrochimica Acta, DOI:10.1016/j.electacta.2015.09.158
[129] Li C, Shi G. Electrochim. Acta, 2011, 56:10737.
[130] Bai H, Li C, Shi G. Adv. Mater., 2011, 23:1089.
[131] Huang D K, Zhang B Y, Zhang Y B, Zhan F, Xu X B, Shen Y, Wang M K. J. Mater. Chem. A, 2013, 1(4):1415.
[132] Mazloum-Ardakani M, Sheikh-Mohseni M A, Benvidi A. Electroanal., 2011, 23(12):2822.
[133] Liu X X, Zhu H, Yang X R. Rsc Advances, 2014, 4(8):3706.
[134] Zhu W C, Huang H, Gao X C, Ma H Y. Mater. Sci. Eng. C-Mater. Bio. Appl., 2014, 45:21.
[135] Alwarappan S, Erdem A, Liu C, Li C Z. J. Phys. Chem. C, 2009, 113:8853.
[136] Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81:5603.
[137] Zhou X B, Yuan C X, Qin D D, Xue Z H, Wang Y L, Du J, Ma L L, Ma L, Lu X Q. Electrochim. Acta, 2014, 119:243.
[138] Nia P M, Meng W P, Lorestani F, Mahmoudian M R, Alias Y. Sensor. Actuat. B:Chem., 2015, 209:100.
[139] Li Y, Huangfu C, Du H, Liu W, Li Y, Ye J. J. Electroanal. Chem., 2013, 709:65.
[140] Ping J F, Wang Y X, Wu J, Ying Y B. Food Chem., 2014, 151:65.
[141] Pokpas K, Zbeda S, Jahed N, Mohamed N, Baker P G, Iwuoha E I. Inter. J. Electrochem. Sci., 2014, 9(2):736.
[142] Bikkarolla S K, Cumpson P, Joseph P, Papakonstantinou P. Faraday. Discuss., 2014, 173:415.
[143] Safavi A, Kazemi H, Kazemi S H. J. Power Sources, 2014, 256:354.
[144] Zhou Y G, Chen J J, Wang F B, Sheng Z H, Xia X H. Chem. Commun., 2010, 46(32):5951.
[145] Liu J P, Zhou H H, Huang J T, Huang Z Y, Zeng F Y, Kuang Y F. Int. J. Hydrogen. Energ., 2012, 37(22):16764.
[146] Liu L J, Gou Y Q, Gao X, Zhang P, Chen W X, Feng S L, Hu F D, Li Y D. Mater. Sci. Eng. C-Mater. Bio. Appl., 2014, 42:227.
[147] Unnikrishnan B, Mani V, Chen S M. Sensor. Actuat. B:Chem., 2012, 173:274.
[148] Cheemalapati S, Palanisamy S, Chen S M. Inter. J. Electrochem. Sci., 2013, 8(3):3953.
[149] Lu J S, Cui D M, Li H N, Zhang Y J, Liu S Q. Electrochim. Acta, 2015, 165:36.
[150] Filik H, Cetintas G, Avan A A, Aydar S, Koc S N, Boz I. Talanta, 2013, 116:245.
[151] Kong Y, Ren X L, Huo Z L, Wang G X, Tao Y X, Yao C. Eur. Food Res. Technol., 2013, 236(6):955.
[152] Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4:3129.
[153] Narayana P S, Teradal N L, Seetharamappa J, Satpati A K. Anal. Methods, 2015, 7(9):3912.
[154] Filip J, Tkac J. Electrochem. Commun., 2014, 49:70.
[155] Liu G, Ma W, Luo Y, Sun D M, Shao S. J. Anal. Methods Chem., 2014, 984314.
[156] Raj M A, John S A. Anal. Chim. Acta, 2013, 771:14.
[157] Yang T, Guan Q, Ma S Y, Li Q H, Jiao K. Chin. J. Chem., 2012, 30(9):1966.
[158] Dai H, Zhang S P, Lin Y Y, Ma Y, Gong L S, Xu G F, Fu M, Li X H, Chen G N. Anal. Methods, 2014, 6(13):4746.
[159] Jeyapragasam T, Saraswathi R, Chen S M, Lou B S. Inter. J. Electrochem. Sci., 2013, 8(11):12353.
[160] Filik H, Cetintas G, Avan A A, Koc S N, Boz I. Inter. J. Electrochem. Sci., 2013, 8(4):5724.
[161] Wang D, Dou W C, Chen Y, Zhao G Y. Rsc Advances, 2014, 4(101):57733.
[162] Mani V, Devadas B, Chen S M. Biosens. Bioelectron., 2013, 41:309.
[163] Du D X, Guo S, Tang L, Ning Y, Yao Q F, Zhang G J. Sensor. Actuat. B, 2013, (186):563.
[1] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[2] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[3] Feng He, Ran Ji, Feng He*. Recent Advances in Graphene Based Separation Membranes [J]. Progress in Chemistry, 2017, 29(8): 833-845.
[4] Linfeng Wei, Jianzhong Ma, Wenbo Zhang, Yan Bao. The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization [J]. Progress in Chemistry, 2017, 29(6): 637-648.
[5] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.
[6] Gao Yurong, Huang Pei, Sun Peipei, Wu Min, Huang Yong. Preparation and Application of Graphene/Cellulose Composites [J]. Progress in Chemistry, 2016, 28(5): 647-656.
[7] Wang Xi, Guo Xiaoyan, Shao Huaiqi, Zhou Qixing, Hu Wanli, Song Xiaojing. Methods, Performances and Mechanisms of Separation Membrane Modified by Graphene and Graphene Oxide [J]. Progress in Chemistry, 2015, 27(10): 1470-1480.
[8] Zhou Li, Deng Huiping*, Wan Junli, Zhang Ruijin. Synthesis and Adsorption of Graphene-Based Iron Oxide Magnetic Nanocomposites [J]. Progress in Chemistry, 2013, 25(01): 145-155.
[9] Zhang Hao, Cui Hua. Fluorescent Sensors Based on Graphene Oxide [J]. Progress in Chemistry, 2012, 24(08): 1554-1559.
[10] Guo Zhijun, Wang Jiahai, Hu Yaohui, Wang Erkang. Application of Biomimetic Nanopore Fabricated in Self-Supported Membrane in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(10): 2103-2112.
[11] Xu Xiujuan Qin Jingui Li Zhen. Research Advances of Graphene [J]. Progress in Chemistry, 2009, 21(12): 2559-2567.