中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1689-1704 DOI: 10.7536/PC150640 Previous Articles   Next Articles

• Review and comments •

Single Atom Catalysis:Concept, Method and Application

Jin Yongyong, Hao Panpan, Ren Jun*, Li Zhong   

  1. Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21376159, 21276169) and the National Science Foundation for Post-doctoral Scientists of China (No. 2014M551060).
PDF ( 8790 ) Cited
Export

EndNote

Ris

BibTeX

With the fabrication of single atom catalysts (SACs) as a new concept, researches on catalysts have deep into smaller scale, which can make it available to dissect complex heterogeneous catalysis on atomic lever, simultaneously provide vast opportunities for applications in industrial catalysis because of their predominant performances. Based on the previous achievements, the main components of this research are as follows: the performance characteristics of SACs are summarized, the preparation, characterizations and theoretical approaches about SACs are introduced, the research developments of applications in CO oxidization, selective hydrogenation and photoelectrocatalysis reaction, etc. are illustrated, the influences of the exceptive electronic structure of SACs on catalytic performance and reaction mechanism are analyzed, the breakthroughs and the shortages of SACs system are pointed out. All these discussions contribute to the profound understanding on principles of SACs, improvement of both theoretical and experimental researches, and furthermore put forward suggestions and prospective for expanding its application range and achieving industrial applications.

Contents
1 Introduction
2 Fabrication and properties of SACs
2.1 Selection of substrates
2.2 Preparation methods
2.3 Catalytic characteristics
3 Structural characterization of SACs
3.1 Characterization methods
3.2 Structual characterization
4 Theoretical methods
4.1 Configuration prediction
4.2 Exploration of reaction mechanism
5 Application of SACs
5.1 Oxidation reaction
5.2 Hydrogenation reaction
5.3 Photoelectrocatalysis reaction
5.4 Other reactions
6 Conclusion

CLC Number: 

[1] 陈诵英(Cheng S Y). 催化反应工程基础(Catalytic Reactor Engineering).北京:化学工业出版社(Beijing:Chemical Industry Press), 2011. 7.
[2] Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987, 16(2): 405.
[3] Boyen H G, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz J, Riethmüller S, Hartmann C, Möller M. Science, 2002, 297(5586): 1533.
[4] Valden M, Lai X, Goodman D W. Science, 1998, 281(5383): 1647.
[5] Uzun A, Ortalan V, Hao Y, Browning N D, Gates B C. ACS Nano, 2009, 3(11): 3691.
[6] Kaden W E, Wu T, Kunkel W A, Anderson S L. Science, 2009, 326(5954): 826.
[7] Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Science, 2008, 321(5894): 1331.
[8] Turner M, Golovko V B, Vaughan O P, Abdulkin P, Berenguer-Murcia A, Tikhov M S, Johnson B F, Lambert R M. Nature, 2008, 454(7207): 981.
[9] Vajda S, Pellin M J, Greeley J P, Marshall C L, Curtiss L A, Ballentine G A, Elam J W, Catillon Mucherie S, Redfern P C, Mehmood F. Nat. Mater., 2009, 8(3): 213.
[10] Judai K, Abbet S, Wörz A S, Heiz U, Henry C R. J. Am. Chem. Soc., 2004, 126(9): 2732.
[11] Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R E, Elam J W, Meyer R J, Redfern P C. Science, 2010, 328(5975): 224.
[12] Qiao B, Wang A, Li L, Lin Q, Wei H, Liu J, Zhang T. ACS Catal., 2014, 4(7): 2113.
[13] Thomas J M, Saghi Z, Gai P L. Top. Catal., 2011, 54(10/12): 588.
[14] Pierre D, Deng W, Flytzani-Stephanopoulos M. Top. Catal., 2007, 46(3/4): 363.
[15] Zhang X, Shi H, Xu B Q. Angew. Chem. Int. Ed, 2005, 44(43): 7132.
[16] Shi Y, Zhao C, Wei H, Guo J, Liang S, Wang A, Zhang T, Liu J, Ma T. Adv. Mater., 2014, 26(48): 8147.
[17] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[18] Zhang L, Wang A, Miller J T, Liu X, Yang X, Wang W, Li L, Huang Y, Mou C Y, Zhang T. ACS Catal., 2014, 4(5): 1546.
[19] Poh C K, Lim S H, Lin J, Feng Y P. J. Phys. Chem. C, 2014, 118(25): 13525.
[20] Yang X F, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts Chem. Res., 2013, 46(8): 1740.
[21] Liang J X, Lin J, Yang X F, Wang A Q, Qiao B T, Liu J, Zhang T, Li J. J. Phys. Chem. C, 2014, 118(38): 21945.
[22] Mao K, Li L, Zhang W, Pei Y, Zeng X C, Wu X, Yang J. Sci. Rep., 2014, 4. 5441.
[23] Wu P, Du P, Zhang H, Cai C. Phys. Chem. Chem. Phys., 2015, 17(2): 1441.
[24] Moses-DeBusk M, Yoon M, Allard L F, Mullins D R, Wu Z, Yang X, Veith G, Stocks G M, Narula C K. J. Am. Chem. Soc., 2013, 135(34): 12634.
[25] Ghosh T K, Nair N N. ChemCatChem, 2013, 5(7): 1811.
[26] Song W, Hensen E J M. J. Phys. Chem. C, 2013, 117(15): 7721.
[27] Liu K, Wang A, Zhang T. ACS Catal., 2012, 2(6): 1165.
[28] Lin J, Qiao B, Liu J, Huang Y, Wang A, Li L, Zhang W, Allard L F, Wang X, Zhang T. Angew. Chem. Int. Ed., 2012, 51(12): 2920.
[29] Liu X, Duan T, Meng C, Han Y. RSC Adv., 2015, 5(14): 10452.
[30] Li F, Li Y, Zeng X C, Chen Z. ACS Catal., 2014, 5(2): 544.
[31] Liu X, Duan T, Sui Y, Meng C, Han Y. RSC Adv., 2014, 4(73): 38750.
[32] Liu Z P, Wang C M, Fan K N. Angew. Chem. Int. Ed., 2006, 118(41): 7019.
[33] Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E H. Science, 2012, 335(6073): 1209.
[34] Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W, Mou C Y. New J. Chem., 2014, 38(5): 2043.
[35] Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5: 5634.
[36] Ding W C, Gu X K, Su H Y, Li W X. J. Phys. Chem. C, 2014, 118(23): 12216.
[37] Narula C K, Allard L F, Stocks G, Moses-DeBusk M. Sci. Rep., 2014, 4,7238.
[38] Wang L, Zhang S, Zhu Y, Patlolla A, Shan J, Yoshida H, Takeda S, Frenkel A I, Tao F. ACS Catal., 2013, 3(5): 1011.
[39] Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T. J. Am. Chem. Soc., 2013, 135(41): 15314.
[40] Gu X K, Qiao B, Huang C Q, Ding W C, Sun K, Zhan E, Zhang T, Liu J, Li W X. ACS Catal., 2014, 4(11): 3886.
[41] Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T K, Sun X. Sci. Rep., 2013, 3,1775.
[42] Xing J, Chen J F, Li Y H, Yuan W T, Zhou Y, Zheng L R, Wang H F, Hu P, Wang Y, Zhao H J, Wang Y, Yang H G. Chemistry, 2014, 20(8): 2138.
[43] Hu P, Huang Z, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X. Angew. Chem. Int. Ed. Engl., 2014, 53(13): 3418.
[44] Gu X K, Qiao B, Huang C Q, Ding W C, Sun K, Zhan E, Zhang T, Liu J, Li W X. ACS Catal., 2014, 4(11): 3886.
[45] Wang Y, Zhou Q, Yang M, Wang J. Comput. Theor. Chem., 2013, 1021: 262.
[46] Wei X, Yang X F, Wang A Q, Li L, Liu X Y, Zhang T, Mou C Y, Li J. J. Phys. Chem. C, 2012, 116(10): 6222.
[47] Zhang H, Kawashima K, Okumura M, Toshima N. J. Mater. Chem. A, 2014, 2(33): 13498.
[48] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(30): 10451.
[49] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[50] Yin H, Tang H, Wang D, Gao Y, Tang Z. ACS Nano, 2012, 6(9): 8288.
[51] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J. Am. Chem. Soc., 2009, 131(23): 8262.
[52] Machado B F, Serp P. Catal. Sci. & Technol., 2012, 2(1): 54.
[53] 徐秀娟(Chen X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559.
[54] Aaltonen T, Rahtu A, Ritala M, Leskelä M. Electrochem. Solid State Lett., 2003, 6(9): C130.
[55] Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W, Zhang X X. Nano Lett., 2012, 12(1): 141.
[56] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I. Nano Lett., 2010, 10(8): 3209.
[57] Warner J H, Rummeli M H, Bachmatiuk A, Büchner B. ACS Nano, 2010, 4(3): 1299.
[58] Grad G, Blaha P, Schwarz K, Auwärter W, Greber T. Phys. Rev. B, 2003, 68(8): 085404.
[59] Lin S, Ye X, Johnson R S, Guo H. J. Phys. Chem. C, 2013, 117(33): 17319.
[60] Zhao P, Su Y, Zhang Y, Li S-J, Chen G. Chem. Phys. Lett., 2011, 515(1): 159.
[61] Gao M, Lyalin A, Taketsugu T. J. Chem. Phys., 2013, 138(3): 034701.
[62] Thomas J M, Raja R, Lewis D W. Angew. Chem. Int. Ed., 2005, 44(40): 6456.
[63] Thomas J M. Phys. Chem. Chem. Phys., 2014, 16(17): 7647.
[64] Flytzani-Stephanopoulos M, Gates B C. Annu. Rev. Chem. Biomol., 2012, 3: 545.
[65] Lu J, Aydin C, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2012, 124(24): 5944.
[66] Kistler J D, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen C Y, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2014, 126(34): 9050.
[67] Abbet S, Sanchez A, Heiz U, Schneider W D, Ferrari A, Pacchioni G, Rösch N. J. Am. Chem. Soc., 2000, 122(14): 3453.
[68] Heiz U, Sanchez A, Abbet S, Schneider W D. J. Am. Chem. Soc., 1999, 121(13): 3214.
[69] Akolekar D B, Bhargava S K, Foran G, Takahashi M. J. Mol. Catal. A: Chem., 2005, 238(1): 78.
[70] Bekyarova E, Kaneko K. Adv. Mater., 2000, 12(21): 1625.
[71] Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5,5634.
[72] Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T. Chem. Commun., 2015, 51(37): 7911.
[73] Qiao B, Liang J X, Wang A, Xu C Q, Li J, Zhang T, Liu J J. Nano Res., 2015, 8(9):2913.
[74] Ehresmann J O, Kletnieks P W, Liang A, Bhirud V A, Bagatchenko O P, Lee E J, Klaric M, Gates B C, Haw J F. Angew. Chem. Int. Ed., 2006, 45(4): 574.
[75] Hackett S F, Brydson R M, Gass M H, Harvey I, Newman A D, Wilson K, Lee A F. Angew. Chem. Int. Ed., 2007, 119(45): 8747.
[76] Kim Y T, Ohshima K, Higashimine K, Uruga T, Takata M, Suematsu H, Mitani T. Angew. Chem. Int. Ed., 2006, 118(3): 421.
[77] Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani Stephanopoulos M. Science, 2014, 346(6216): 1498.
[78] Yang M, Allard L F, Flytzani-Stephanopoulos M. J. Am. Chem. Soc., 2013, 135(10): 3768.
[79] 陈彩营(Chen C Y).太原理工大学硕士论文( Master Thesis of Taiyuan University of Technology), 2014.
[80] Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X. Angew. Chem. Int. Ed., 2012, 124(17): 4274.
[81] Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Science, 2014, 344(6184): 616.
[82] Gong X Q, Selloni A, Dulub O, Jacobson P, Diebold U. J. Am. Chem. Soc., 2008, 130(1): 370.
[83] Bell A T. Science, 2003, 299(5613): 1688.
[84] Haruta M. Cattech, 2002, 6(3): 102.
[85] Chang T Y, Tanaka Y, Ishikawa R, Toyoura K, Matsunaga K, Ikuhara Y, Shibata N. Nano Lett., 2014, 14(1): 134.
[86] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P. Nature, 2010, 464(7288): 571.
[87] Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook S J, Chisholm M F. Nat. Commun., 2013, 4: 1924.
[88] Emmrich M, Huber F, Pielmeier F, Welker J, Hofmann T, Schneiderbauer M, Meuer D, Polesya S, Mankovsky S, Ködderitzsch D. Science, 2015, 348(6232): 308.
[89] Wanjala B N, Fang B, Luo J, Chen Y, Yin J, Engelhard M H, Loukrakpam R, Zhong C J. J. Am. Chem. Soc., 2011, 133(32): 12714.
[90] 刘向文(Liu X W), 王定胜(Wang D S), 彭卿(Peng Q), 李亚栋(Li Y D). 中国科学: 化学(Science China Chemistry), 2014, 1: 011.
[91] 麦振洪(Mai Z H). 同步辐射光源及其应用(Synchrotron Radiation Light Source and its Application). 北京:科学出版社(Beijing:Science Press), 2013.03.
[92] Chen M, Goodman D. Science, 2004, 306(5694): 252.
[93] Matthey D, Wang J, Wendt S, Matthiesen J, Schaub R, Lgsgaard E, Hammer B, Besenbacher F. Science, 2007, 315(5819): 1692.
[94] Kwak J H, Hu J, Mei D, Yi C W, Kim D H, Peden C H, Allard L F, Szanyi J. Science. 2009, 325(5948): 1670.
[95] Liu L, Zhou F, Wang L, Qi X, Shi F, Deng Y. J Catal., 2010, 274(1): 1.
[96] Calaza F C, Xu Y, Mullins D R, Overbury S H. J. Am. Chem. Soc., 2012, 134(43): 18034.
[97] Diebold U. Surface Science Reports, 2003, 48(5): 53.
[98] Campbell C T. Nat. Chem., 2012, 4(8): 597.
[99] Bruix A, Rodriguez J A, Ramirez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. J. Am. Chem. Soc., 2012, 134(21): 8968.
[100] Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W L, Mou C Y. New J. Chem., 2014, 38(5): 2043.
[101] Du A, Chen Y, Zhu Z, Amal R, Lu G Q, Smith S C. J. Am. Chem. Soc., 2009, 131(47): 17354.
[102] Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. ACS Catalysis, 2012, 2(7): 1519.
[103] Xing J, Jiang H B, Chen J F, Li Y H, Wu L, Yang S, Zheng L R, Wang H F, Hu P, Zhao H J,Yang H G. J. Mater. Chem. A, 2013, 1(48): 15258.
[1] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide* [J]. Progress in Chemistry, 0, (): 201111-201111.
[2] . Application of Nanotechnology for Virus Inactivation in Water: Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 0, (): 0-0.
[3] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Research and Prospect of Selective Oxidation of HMF [J]. Progress in Chemistry, 0, (): 8-0.
[4] Yanyan Zhu, Zongyang Yue, Wen Bian, Ruilin Liu, Xiaoxun Ma, Xiaodong Wang. The Structure of Hexaaluminate and Application in High-Temperature Reaction [J]. Progress in Chemistry, 2018, 30(12): 1992-2002.
[5] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[6] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[7] Junjian An, Mengling Wang, Mengxuan Huang, Peng Wang, Guangyan Zhang. Environmental Catalytic Performance of BiFeO3 and Its Modifier [J]. Progress in Chemistry, 2018, 30(9): 1298-1307.
[8] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[9] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[10] Mengya Yuan, Xiaoyun Chen*, Shengling Lin*. Synthesis of the Functionalized Enamine [J]. Progress in Chemistry, 2018, 30(8): 1082-1096.
[11] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.
[12] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[13] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[14] Yang Wu, Yu Wang, Rongliang Qiu, Xin Yang. Reductive Debromination and Advanced Oxidation of Polybrominated Diphenyl Ethers(PBDEs) Using Zero-Valent Iron(ZVI) Based Materials [J]. Progress in Chemistry, 2018, 30(4): 420-428.
[15] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.