中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1808-1814 DOI: 10.7536/PC150638 Previous Articles   Next Articles

• Review and comments •

Solvent Development in CO2 Chemical Absorption

Fang Mengxiang*, Zhou Xuping, Wang Tao, Luo Zhongyang   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51076139,51276161), the International Cooperative Project (No. 2013DFR60140), and the National Natural Science Foundation of Zhejiang Province (No. LY13E060004).
PDF ( 3141 ) Cited
Export

EndNote

Ris

BibTeX

Chemical absorption is one of the most mature method for post combustion CO2 capture. The current paper gives an overview of the development of solvent for CO2 capture. In addition to ammines, ammonia solutions, amino acid salts, potassium carbonate solutions are typical solvents which have been widely investigated. Many novel solvents have been proposed, for example blended amines, phase change solvents, ionic liquid, nanofluids based absorbent, switchable solvents and designer amines. The advantages and disadvantages of the solvents are introduced and among them blended amine solutions and phase change solvents are the most promising novel solvents which have great potential in decrease energy consumption.

Contents
1 Introduction
2 Technical analysis of CO2 chemical absorption
2.1 System process of CO2 chemical absorption
2.2 Characteristics of CO2 chemical absorption
3 Solvent development
3.1 Typical solvents
3.2 Novel solvents
4 Conclusion and outlook

CLC Number: 

[1] Jefferson M. Technological Forecasting and Social Change, 2015, 92: 362.
[2] Ma'Mun S, Svendsen H F, Hoff K A, Juliussen O. Energy Conversion and Management, 2007, 48(1): 251.
[3] BP Statistical Review of World Energy June 2014. England: BP Amoco, 2015.
[4] Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Chemical Engineering Research and Design, 2011, 89(9): 1609.
[5] Kenarsari S D, Yang D L, Jiang G D, Zhang S J, Wang J, Russell A G, Wei Q, Fan M H. RSC Advances, 2013, 3(45): 22739.
[6] 汪明喜(Wang M X). 浙江大学硕士论文(Master Dissertation of Zhejiang University), 2013.
[7] 郭东方(Guo D F), 王金意(Wang J Y),Gabriel Da Silva,郜时旺(Gao S W). 中国电机工程学报(Proceedings of CSEE), 2013,(32): 29.
[8] Jing G H, Zhou L J, Zhou Z M. Chem. Eng. J., 2012, 181/182: 85.
[9] Gouedard C, Picq D, Launay F, Carrette P L. International Journal of Greenhouse Gas Control, 2012, 10: 244.
[10] Huang Q Z, Bhatnagar S, Remias J E, Selegue J P, Liu K L. International Journal of Greenhouse Gas Control, 2013, 19: 243.
[11] Mazari S A, Ali B S, Jan B M, Saeed I M. International Journal of Greenhouse Gas Control, 2014, 31: 214.
[12] Chen X, Closmann F, Rochelle G T. Energy Procedia, 2011, 4: 101.
[13] Qin F, Wang S J, Kim I, Svendsen H F, Chen C H. International Journal of Greenhouse Gas Control, 2011, 5(3): 405.
[14] Porcheron F, Gibert A, Mougin P, Wender A. Environ. Sci. Technol., 2011, 45(6): 2486.
[15] Zhang Y, Chen C. Ind. Eng. Chem. Res., 2011, 50(1): 163.
[16] Samanta A, Bandyopadhyay S S. Chem. Eng. J., 2011, 171(3): 734.
[17] Pahlavanzadeh H, Nourani S, Saber M. J. Chem. Thermodyn., 2011, 43(12): 1775.
[18] Chen X, Rochelle G T. Chemical Engineering Research and Design, 2011, 89(9): 1693.
[19] Du Y, Li L, Namjoshi O, Voice A K, Fine N A, Rochelle G T. GHGT-11, 2013, 37: 1621.
[20] Yeh A C, Bai H. Sci. Total Environ., 1999, 228(2): 121.
[21] Bai H, Yeh A C. Industrial & Engineering Chemistry Research, 1997, 36: 2490.
[22] Zhang M K, Guo Y C. International Journal of Greenhouse Gas Control, 2013, 18: 114.
[23] Lim J, Kim D H, Yoon Y, Jeong S K, Park K T, Nam S C. Energy Fuel, 2012, 26(6): 3910.
[24] Ma'Mun S, Kim I. Energy Procedia, 2013, 37: 331.
[25] Ma'Mun S. Energy Procedia, 2014, 51: 191.
[26] Cullinane J T, Rochelle G T. Chem. Eng. Sci., 2004, 59(17): 3619.
[27] Oexmann J, Hensel C, Kather A. International Journal of Greenhouse Gas Control, 2008, 2(4): 539.
[28] Park S, Song H, Lee M, Park J. Korean J. Chem. Eng., 2014, 31(1): 125.
[29] Liu J Z, Wang S J, Zhao B, Tong H, Chen C H. Energy Procedia, 2009, 1(1): 933.
[30] Zhang M K, Guo Y C. International Journal of Greenhouse Gas Control, 2013, 16: 61.
[31] Qin F, Wang S J, Hartono A, Svendsen H F, Chen C H. International Journal of Greenhouse Gas Control, 2010, 4(5): 729.
[32] Yu H, Xiang Q, Fang M X, Yang Q Y, Feron P. Greenhouse Gases-Science and Technology, 2012, 2(3): 200.
[33] Darde V, Thomsen K, van Well W J M, Stenby E H. International Journal of Greenhouse Gas Control, 2010, 4(2): 131.
[34] Ma S C, Song H H, Wang M X, Yang J H, Zang B. Chemical Engineering Research and Design, 2013, 91(7): 1327.
[35] Li K K, Yu H, Tade M, Feron P. International Journal of Greenhouse Gas Control, 2014, 24: 54.
[36] Mani F, Peruzzini M, Barzagli F. ChemSusChem, 2008, 1(3): 228.
[37] Aronu U E, Hessen E T, Haug-Warberg T, Hoff K A, Svendsen H F. Chem. Eng. Sci., 2011, 66(10): 2191.
[38] Song H J, Park S, Kim H, Gaur A, Park J W, Lee S J. International Journal of Greenhouse Gas Control, 2012, 11: 64.
[39] Jockenhövel T, Schneider R. Energy Procedia, 2011, 4: 1451.
[40] Knuutila H, Aronu U E, Kvamsdal H M, Chikukwa A. Energy Procedia, 2011. 4: 1550.
[41] Holst J V, Versteeg G F, Brilman D W F, Hogendoorn J A. Chem. Eng. Sci., 2009, 64(1): 59.
[42] Rabensteiner M, Kinger G, Koller M, Gronald G, Unterberger S, Hochenauer C. International Journal of Greenhouse Gas Control, 2014, 29: 1.
[43] Kumar P S, Hogendoorn J A, Versteeg G F, Feron P H M. AIChE Journal, 2003, 49(1): 203.
[44] Majchrowicz M E, Brilman D W F W, Groeneveld M J. Energy Procedia, 2009, 1(1): 979.
[45] Aronu U E, Svendsen H F, Hoff K A, Juliussen O. Energy Procedia, 2009, 1(1): 1051.
[46] Erga O, Juliussen O, Lidal H. Energy Conversion Management, 1995, 36(6/9): 387.
[47] 申淑锋(Shen S F).河北科技大学学报(Journal of Hebei University of Science and Technology), 2013,(02): 142.
[48] Thee H, Suryaputradinata Y A, Mumford K A, Smith K H, Silva G D, Kentish S E, Stevens G W. Chem. Eng. J., 2012, 210: 271.
[49] Oexmann J, Hensel C, Kather A. International Journal of Greenhouse Gas Control, 2008, 2(4): 539.
[50] Thee H, Nicholas N J, Smith K H, Da Silva G, Kentish S E, Stevens G W. International Journal of Greenhouse Gas Control, 2014, 20: 212.
[51] Thee H, Smith K H, Da Silva G, Kentish S E, Stevens G W. Chem. Eng. J., 2012, 181/182: 694.
[52] Shen S F, Yang Y N, Ren S F. Fluid Phase Equilibr., 2014, 367: 38.
[53] Lu Y Q, Ye X H, Zhang Z H, Khodayari A, Djukadi T. Energy Procedia, 2011, 4: 1286.
[54] Horng S Y, Li M H. Ind. Eng. Chem. Res., 2002, 41(2): 257.
[55] Choi W J, Seo J B, Jang S Y, Jung J H, Oh K J. J. Environ. Sci., 2009, 21(7): 907.
[56] Kumar G, Mondal T K, Kundu M. J. Chem. Eng. Data, 2012, 57(3): 670.
[57] Conway W, Beyad Y, Richner G, Puxty G, Feron P. Chem. Eng. J., 2015, 264: 954.
[58] Freeman S A, Dugas R, Van Wagener D H, Nguyen T, Rochelle G T. International Journal of Greenhouse Gas Control, 2010, 4(2): 119.
[59] Li L, Voice A K, Li H, Namjoshi O, Nguyen T, Du Y, Rochelle G T. Energy Procedia, 2013, 37: 353.
[60] Li H, Li L, Nguyen T, Rochelle G T, Chen J. Energy Procedia, 2013, 37: 340.
[61] Conway W, Bruggink S, Beyad Y, Luo W, Melián-Cabrera I, Puxty G, Feron P. Chem. Eng. Sci., 2015, 126: 446.
[62] Svendsen H F, Hessen E T, Mejdell T. Chem. Eng. J., 2011, 171(3): 718.
[63] Raynal L, Alix P, Bouillon P, Gomez A, de Nailly M L F, Jacquin M, Kittel J, di Lella A, Mougin P, Trapy J. Energy Procedia, 2011, 4: 779.
[64] Zhang J, Qiao Y, Wang W, Misch R, Hussain K, Agar D W. Energy Procedia, 2013, 37: 1254.
[65] Xu Z, Wang S, Chen C. International Journal of Greenhouse Gas Control, 2013, 16: 107.
[66] Kim Y E, Park J H, Yun S H, Nam S C, Jeong S K, Yoon Y I. J. Ind. Eng. Chem., 2014, 20(4): 1486.
[67] Brennecke J F, Maginn E J, McCready M J, Murphy P, Schneider W F. 2013. http://www.arpa-.energy.gov/sites/default/files/documents/files/CO2_Workshop_NotreDame.pdf.
[68] Sanchez-Fernandez E, Mercader F D M, Misiak K, van der Ham L, Linders M, Goetheer E. Energy Procedia, 2013, 37: 1160.
[69] Aronu U E, Ciftja A F, Kim I, Hartono A. Energy Procedia, 2013, 37: 233.
[70] Patino J, Gutierrez M C, Carriazo D, Ania C O, Fierro J L G, Ferrer M L, Del Monte F. Journal of Materials Chemistry A, 2014, 2(23): 8719.
[71] Seddon K R. ACS Symposium Series, 2002, 819: 34.
[72] Endres F, Zein El Abedin S. Phys. Chem. Chem. Phys., 2006, 8(18): 2101.
[73] Paulechka Y U. J. Phys. Chem. Ref. Data, 2010, 39(3): 033108.
[74] E. Alpera B W W D. Chem. Eng. Sci., 1980, 35: 217.
[75] Kluytmans J H J, van Wachem B G M, Kuster B F M, Schouten J C. Chem. Eng. Sci., 2003, 58(20): 4719.
[76] Schumpe A, Saxena L A K. Chem. Eng. Sci., 1987, 42(7): 1787.
[77] Jiang J Z, Zhao B, Zhuo Y Q, Wang S J. International Journal of Greenhouse Gas Control, 2014, 29: 135.
[78] Wang T, Yu W, Fang M X. Greenhouse Gases: Science and Technology, 2015, 5(5): 682.
[79] Philip G. Jessop D J H X. Nature, 2005, 436(7054): 1102.
[80] 王九霞(Wang J X), 苏鑫(Su X), Jessop P G, 冯玉军(Feng Y J).化学进展(Progress in Chemistry), 2010, 22(11): 2099.
[81] Conway W, Yang Q, James S, Wei C, Bown M, Feron P, Puxty G. Energy Procedia, 2014, 63: 1827.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[9] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[10] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[11] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[12] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[13] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[14] Hong Su, Yejun Han. Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis [J]. Progress in Chemistry, 2019, 31(2/3): 433-441.
[15] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.