中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 91-102 DOI: 10.7536/PC150633 Previous Articles   Next Articles

• Review and comments •

The Surface Modification of Ferritin and Its Applications

Yang Caiyun1,2,3, Cao Changqian1,2, Cai Yao1,2,3, Zhang Tongwei1,2, Pan Yongxin1,2*   

  1. 1. France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (No. KZCX2-YW-T10), the National Natural Science Foundation of China (No. 41330104, 41204053), and the R&D of Key Instruments and Technologies for Deep Resources Prospecting (No. ZDYZ2012-1-01-02).
PDF ( 1870 ) Cited
Export

EndNote

Ris

BibTeX

Ferritin is a spherical protein composed of 24 subunits with an outer diameter of 12 nm and inner cavity diameter of 8 nm. The inner cavity can accommodate up to 4500 iron atoms as an iron mineral core (ferrihydrite in original). This special architecture of ferritin makes it an ideal nanoscale biotemplate. With the modification of the protein shell and the transformation of the inner mineral core, researchers have developed series of multifunctional cancer diagnostic agents and drug delivery systems against tumors. Recent studies of ferritin modification have focused on: (1) interior modification to make the nucleation of ferritin more efficient;(2) exterior modification by connecting PEG or antibody on the protein shell to develop ferritin new functions; (3) modification of interface between subunits to control the self-assemble of ferritin. This review summarizes the recent advances in the surface modifications of ferritin. We firstly review the two different modified methods, the chemical modification and the biological modification, then, discuss the diverse applications with modified ferritin in biomedicine, diagnostics and nano electronics, and the existing problems in the surface modifications of ferritin. We propose that a way to develop novel functionalized ferritin-based nano-materials is to combine the chemical and biological means.

Contents
1 Introduction
2 Structure of ferritin
3 The surface modification of ferritin and its applications
3.1 The surface modification of ferritin with chemical methods
3.2 Applications of chemically modified ferritin
3.3 The surface modification of ferritin with biological methods and its applications
4 Conclusion and outlook

CLC Number: 

[1] Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G. J. Phys. Chem. C, 2010, 114 (4): 1822.
[2] Lin C A J, Lee C H, Hsieh J T, Wang H T, Li J K, Shen J L, Chan W H, Yeh H I, Chang W H. J. Med. Biol. Eng., 2009, 29(6): 276.
[3] Bakunin V N, Suslov A Yu, Kuzmina G N, Parenago O P, Topchiev A V. J. Nanopart. Res., 2004, 6(2): 273.
[4] Dastjerdi R, Montazer M. Colloids Surf. B Biointerfaces, 2010, 79(1): 5.
[5] Laufberger V. Bull. Soc. Chim. Biol., 1937, 19: 1575.
[6] Crichton R R. Angew. Chem. Int. Ed., 1973, 12: 57.
[7] Jutz G, Rijn P, Miranda B, Böker A. Chem. Rev., 2015, 115: 1653.
[8] Yamashita I, Iwahoria K, Kumagai S. BBA-Gen. Subjects, 2010, 1800(8): 846.
[9] MaHam A, Tang Z, Wu H, Wang J, Lin Y. Small, 2009, 5(15): 1706.
[10] Cao C Q, Wang X X, Cai Y, Sun L, Tian L X, Wu H, He X Q, Lei H, Liu W F, Chen G J, Zhu R X, Pan Y X. Adv. Mater., 2014, 26(16): 2566.
[11] Harrison P M, Fischbach F A, Hoy T G, Haggis G H. Nature, 1967, 216: 1188.
[12] Harrison P M, Arosio P. BBA-Bioenergetics, 1996, 1275(3): 161.
[13] Fletcher J M, Harniman R L, Barnes F R, A. Boyle L, Collins A, Mantell J, Sharp T H, Antognozzi M, Booth P J, Linden N, Miles M J, Sessions R B, Verkade P, Woolfson D N. Science, 2013, 340: 595.
[14] Pierre T G St, Tran K C, Webb J, Macey D J, Heywood B R, Sparks N H, Wade V J, Manna S, Pootrakul P. Biometals, 1991, 4(3): 162.
[15] Domínguez-Vera J M, Fernández B, Gálvez N. Future Med. Chem., 2010, 2(4): 609.
[16] Stillman T J, Hempstead P D, Artymiuk P J, Andrews S C, Hudson A J, Treffry A, Guest J R, Harrison P M. J. Mol. Biol., 2001, 307(2): 587.
[17] Toussaint L, Bertrand L, Hue L, Crichton R R, Declercq J. J. Mol. Biol., 2007, 365(2): 440.
[18] Lawson D M, Artymiuk P J, Yewdall S J, Smith J M A, Livingstone J C, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, Thomas C D, Shaw W V, Harrison P M. Nature, 1991, 349: 541.
[19] Levi S, Salfeld J, Franceschinelli F, Cozzi A, Dorner M H, Arosio P. Biochemistry, 1989, 28: 5179.
[20] Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P. Biochem. J., 1996, 314: 139.
[21] Levi S, Salfeld J, Franceschinelli F, Cozzi A, Dorner M H, Arosio P. Biochemistry, 1989, 28(12): 5179.
[22] Hempstead P D, Yewdall S J, Fernie A R, Lawson D M, Artymiuk P J, Rice D W, Ford G C, Harrison P M. J. Mol. Biol., 1997, 268: 424.
[23] 曹长乾(Cao C Q), 田兰香(Tian L X), 蔡垚(Cai Y), 潘永信(Pan Y X). 生物医用磁性纳米材料与器件(Magnetic Nano-Materials and Devices for Biomedical Applications). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 61.
[24] Meldrum F C, Heywood B R, Mann S. Science, 1992, 257: 522.
[25] Wong K K W, Douglas T, Gider S, Awschalom D D, Mann S. Chem. Mater., 1998, 10 (1): 279.
[26] Takeda S, Ohta M, Ebina S, Nagayama K. BBA-Gene. Struct. Expr., 1993, 1174(2): 218.
[27] Jaaskelainen A, Harinen R, Lamminmaki U, Korpimaki T, Pelliniemi L J, Soukka T. Small, 2007, 3(8): 1362.
[28] Santambrogio P, Cozzi A, Levi S, Rovida E, Magni F, Albertini A, Arosio P. Protein Expres. Purif., 2000, 19: 212.
[29] Uchida M, Terashima M, Cunningham C H, Suzuki Y, Willits D A, Willis A F, Yang P C, Tsao P S, McConnell M V, Young M J, Douglas T. Magnet. Reson. Med., 2008, 60(5): 1073.
[30] Cao C Q, Tian L X, Liu Q S, Liu W F, Chen G J, Pan Y X. J. Geophys. Res., 2010, 115: B07103.
[31] Fan K L, Cao C Q, Pan Y X, Lu D, Yang D, Feng J, Song L N, Liang M M, Yan X Y. Nat. Nanotechnol., 2012, 7: 459.
[32] Domínguez-Vera J M, Fernández B, Gálvez N. Future Med. Chem., 2010, 2(4): 609.
[33] Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T. BBA-Gen. Subjects, 2010, 1800(8): 834.
[34] Kramer R M, Li C, Carter D C, Stone M O, Naik R R. J. Am. Chem. Soc., 2004, 126 (41): 13282.
[35] Wetz K, Crichton R R. Eur. J. Biochem., 1976, 61: 545.
[36] Veronese F M. Biomaterials, 2001, 22(5): 405.
[37] Hermanson G T. Bioconjugate Techniques. 2nd ed. Elsevier Press, 2008. 211.
[38] Schoonen L, van Hest J C M. Nanoscale, 2014, 6: 7124.
[39] Zeng Q, Reuther R, Oxsher J, Wang Q. Bioorg. Chem., 2008, 36: 255.
[40] Brewer C F, Riehm J P. Anal. Biochem., 1967, 18(2): 248.
[41] Takeda S, Yamaki M, Ebina S, Nagayama K. J. Biochem., 1995, 117(2): 267.
[42] Kunkel G R, Mehrabian M, Martinson H G. Mol. Cell. Biochem., 1981, 34: 3.
[43] Hoare D G, Koshland D E. The American J. Biol. Chem., 1967, 242: 2447.
[44] Gilles M A, Hudson A Q, Borders C L. Anal. Biochem., 1990, 184(2): 244.
[45] Kishida Y, Olsen B R, Berg R A, Prockop D J. J. Cell. Biol., 1975, 64: 331.
[46] Grabarek Z, Gergely J. Anal. Biochem., 1990, 185(1): 131.
[47] Lee J M, Edwards H H L, Pereira C A, Samii S I. J. Mater. Sci. Mater. Med., 1996, 7(9): 531.
[48] Jang L, Keng H. Biomed. Microdevices., 2008, 10(2): 203.
[49] Staros J V. Biochemistry, 1982, 21 (17): 3950.
[50] Donovan J A, Jennings M L. Biochemistry, 1986, 25 (7): 1538.
[51] Anjaneyulu P S R, Staros J V. Int. J. Pept. Protein. Res., 1987, 30(1): 117.
[52] Greenberg C S, Birckbichler P J, Rice R H. FASEB J., 1991, 5: 3071.
[53] Fontana A, Spolaore B, Mero A, Veronese F M. Adv. Drug Deliv. Rev., 2008, 60: 13.
[54] Jutz G, Böker A. Polymer, 2011, 52: 211.
[55] Walsh E G, Mills D R, Lim S, Sana B, Brilliant K E, Park W K C. J. Nanopart. Res., 2013, 15: 1409.
[56] Hainfeld J F. P. Natl. Acad. Sci. U. S. A., 1992, 89: 11064.
[57] Tang Z, Wu H, Zhang Y, Li Z, Lin Y. Anal. Chem., 2011, 83: 8611.
[58] Fernández B, Gálvez N, Sánchez P, Morales J, Santoyo F, Cuesta R, Domínguez-Vera J M. Inorg. Chim. Acta, 2007, 360: 3951.
[59] Terashima M, Uchida M, Kosuge H, Tsao P S, Young M J, Conolly S M, Douglas T, McConnell M V. Biomaterials, 2011, 32(5): 1430.
[60] Lin X, Xie J, Zhu L, Lee S, Niu G, Ma Y, Kim K, Chen X Y. Angew. Chem. Int. Ed., 2011, 123: 1607.
[61] Fernndez B, Glvez N, Snchez P, Cuesta R, Bermejo R, Domínguez-Vera J M. J. Biol. Inorg. Chem., 2008, 13: 349.
[62] Denisov V N, Metelitsa D I. Biokhimiia, 1987, 52(8):1248.
[63] Mero A, Schiavon M, Veronese F M,Pasut G. J. Control. Release, 2011, 154: 27.
[64] Zalipsky S, Lee C. Poly(Ethylene Glycol) Chemistry. Springer, 1992. 347.
[65] Davis F F, Abuchowski A, Van E T. Enzyme Engineering. Springer, 1978. 4: 169.
[66] Harris J M, Martin N E, Modi M. Clin. Pharmacokinet. 2001, 40 (7): 539.
[67] Roberts M J, Bentley M D, Harris J M. Adv. Drug Deliv. Rev., 2002, 4(54): 459.
[68] Molineux G. Cancer Treat. Rev., 2002, 28: 13.
[69] Chapman A P, Antoniw P, Spitali M, West S, Stephens S, King D J. Nat. Biotechnol., 1999, 17: 780.
[70] Harris J M, Chess R B. Nat. Rev. Drug Discov., 2003, 2: 214.
[71] Woodburn K W, Holmes C P, Wilson S D, Fong K L, Press R J, Moriya Y, Tagawa Y. Xenobiotica, 2012, 42(7): 660.
[72] Vellard M. Curr. Opin. Biotechnol., 2003, 14(4): 444.
[73] Pepinsky R B, Walus L, Shao Z, Ji B, Gu S, Sun Y, Wen D, Lee X, Wang Q, Garber E, Mi S. Bioconjug. Chem., 2011, 22(2): 200.
[74] Alconcel S N S, Baas A S, Maynard H D. Polym. Chem.-UK, 2011, 2: 1442.
[75] Tsukamoto R, Muraoka M, Fukushige Y, Kawaguchi T, Nakatsuji Y, Yamashita I. Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 2006, 86.
[76] Tsukamoto R, Muraoka M, Fukushige Y, Nakagawa H, Kawaguchi T, Nakatsuji Y, Yamashita I. Bull. Chem. Soc. Jpn., 2008, 81(12): 1669.
[77] Vannucci L, Falvo E, Fornara M, Micco P D, Benada O, Krizan J, Svoboda J, Hulikova-Capkova K, Morea V, Boffi A, Ceci P. Int. J. Nanomedicine, 2012, 7: 1489.
[78] Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P. Nanoscale, 2013, 5: 12278.
[79] Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Mannelli L D C, Ghelardini C, Ferretti A M, Ponti A, Sangregorio C, Ceci P. ACS Nano, 2014, 8(5): 4705.
[80] Tsukamoto R, Godonoga M, Matsuyama R, Igarashi M, Heddle J G, Samukawa S, Yamashita I. Langmuir, 2013, 29: 12737.
[81] Tamura Y, Kaizu T, Kiba T, Igarashi M, Tsukamoto R, Higo A, Hu W, Thomas C, Fauzi M E, Hoshii T, Yamashita I, Okada Y, Murayama A, Samukawa S. Nanotechnology, 2013, 24: 285301.
[82] Matsumura S, Aoki I, Saga T, Shiba K. Mol. Pharm., 2011, 8: 1970.
[83] Sengonul M, Ruzicka J, Attygalle A B, Libera M. Polymer, 2007, 48: 3632.
[84] Sengonul M, Sousa A, Libera M. Colloids Surf. B: Biointerfaces, 2009, 73(1): 152.
[85] Wong K K W, Whilton N T, Cölfen H, Douglas T, Mann S. Chem. Commun., 1998, 1621.
[86] Wong K K W, Cölfen H, Whilton N T, Douglas T, Mann S. J. Inorg. Biochem., 1999, 76: 187.
[87] Zeng Q, Li T, Cash B, Li S, Xie F, Wang Q. Chem. Commun., 2007, 1453.
[88] Danon D, Goldstein L, Marikovsky Y, Skutelsky E. J. Ultrastruct. Res., 1972, 38: 500.
[89] Perriman A W, Mann S. ACS Nano, 2011, 5(8): 6085.
[90] Perriman A W, Cölfen H, Hughes R W, Barrie C L, Mann S. Angew. Chem. Int. Ed., 2009, 48(34): 6242.
[91] Mougin N C, Rijn P V, Park H, Müller A H E, Böker A. Adv. Funct. Mater., 2011, 21(13): 2470.
[92] Hu Y, Samanta D, Parelkar S S, Hong S W, Wang Q, Russell T P, Emrick T. Adv. Funct. Mater., 2010, 20: 3603.
[93] Rijn P V, Mougin N C, Franke D, Parka H, Böker A. Chem. Commun., 2011, 47: 8376.
[94] Kang Y J, Yang H J, Jeon S, Kang Y, Do Y, Hong S Y, Kang S. Macromol. Biosci., 2014, 14: 619.
[95] Kang Y J, Park D C, Shin H, Park J, Kang S. Biomacromolecules, 2012, 13: 4057.
[96] Iordanova B, Ahrens E T. Neuroimage, 2012, 59(2): 1004.
[97] Lee S, Lee K H, Ha J, Lee S, Kim T K. Angew. Chem. Int. Ed., 2011, 50(37): 8709.
[98] Kim S, Ahn K, Park J, Kim K R, Lee K E, Han S, Lee J. Anal. Chem., 2011, 83: 5834.
[99] Li K, Zhang Z, Luo M, Yu X, Han Y, Wei H, Cui Z, Zhang X. Nanoscale, 2012, 4: 188.
[100] Jääskeläinen A, Harinen R, Soukka T, Lamminmki U, Korpimki T, Virta M. Anal. Chem., 2008, 80 (3): 583.
[101] Kang H J, Kang Y J, Lee Y, Shin H, Chung S J, Kang S. Biomaterials, 2012, 33: 5423.
[102] Hwang M P, Lee J, Lee K E, Lee K H. Think Modular: ACS Nano, 2013, 7 (9): 8167.
[103] Uchida M, Flenniken M L, Allen M. J. Am. Chem. Soc., 2006, 128(51): 16626.
[104] Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, Fei B, Chen X, Xu B, Xie J. ACS Nano, 2013, 7 (8): 6988.
[105] Uchida M, Willits D A, Muller K, Willis A F, Jackiw L, Jutila M, Young M J, Porter A E, Douglas T. Adv. Mater., 2009, 21: 458.
[106] Normanno N, Luca A D, Bianco C, Strizzi L, Mancino M, Maiello M R, Carotenuto A, Feo G D, Caponigro F, Salomon D S. Gene, 2006, 366(1): 2.
[107] Li X, Qiu L, Zhu P, Tao X, Imanaka T, Zhao J, Huang Y, Tu Y, Cao X. Small, 2012, 8: 2505.
[108] Li C Q, Soistman E, Carter D C. Ind. Biot., 2006, 2(2): 143.
[109] Kanekiyo M, Wei C, Yassine H M, McTamney P M, Boyington J C, Whittle J R R, Rao S S, Kong W, Wang L, Nabel G J. Nature, 2013, 499(7456): 102.
[110] Han J, Kang Y J, Shin C, Ra J, Shin H, Hong S Y, Do Y, Kang S. Nanomedicine, 2014, 10: 561.
[111] Aime S, Frullano L, Crich S G. Angew. Chem. Int. Ed., 2002, 41(6): 1017.
[112] Kang S, Oltrogge L M, Broomell C C, Liepold L O, Prevelige P E, Young M, Douglas T. J. Am. Chem. Soc., 2008, 130: 16527.
[113] Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, Leapman R, Chen X. Nano Lett., 2011, 11: 814.
[114] Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. ACS Nano, 2013, 7(6): 4830.
[115] Yamashita I, Kirimura H, Okuda M, Nishio K, Sano K, Shiba K, Hayashi T, Hara M, Mishima Y. Small, 2006, 2(10): 1148.
[116] Matsui T, Matsukawa N, Iwahori K, Sano K, Shiba K, Yamashita I. Langmuir, 2007, 23 (4): 1615.
[117] Kumari S, Kulkarni A, Kumaraswamy G, Gupta S S. Chem. Mater., 2013, 25: 4813.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[7] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[8] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[9] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[10] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[11] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[12] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[13] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[14] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[15] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.